论文标题

机器学习应用程序的嘈杂中间尺度量子计算机

Machine learning applications for noisy intermediate-scale quantum computers

论文作者

Coyle, Brian

论文摘要

量子机器学习已被证明是一个富有成果的领域,可以在其中寻找量子计算机的潜在应用。对于短期内可用的人来说,尤其如此,即所谓的嘈杂的中间尺度量子(NISQ)设备。在本论文中,我们开发和研究了适合NISQ计算机的三个量子机学习应用程序,该应用程序是根据提交给它们的数据的复杂性提高的。这些算法本质上是变异的,并且使用参数化的量子电路(PQC)作为基础量子机学习模型。第一个应用区域是使用PQCS进行量子分类,其中数据是经典的特征向量及其相应的标签。在这里,我们研究了这些模型中某些数据编码策略的鲁棒性,以针对量子计算机中存在的噪声。第二个区域是使用量子计算机的生成建模,我们在其中使用量子电路出生的机器从复杂的概率分布中学习和采样。我们讨论并提出了此类模型的量子优势的框架,提出了基于梯度的训练方法,并在数值和Rigetti量子计算机上演示了这些方法,最高可达28 QUAT。对于我们的最终应用,我们在近似量子克隆的区域中提出了一种变异算法,在该区域中,数据本质上变为量子。对于算法,我们得出可区分的成本函数,证明了诸如忠诚之类的理论保证,并结合了诸如量子体系结构搜索之类的艺术方法。此外,我们证明了该算法如何在发现对量子加密协议的可实施攻击方面有用,重点是量子硬币翻转和键分布作为示例。

Quantum machine learning has proven to be a fruitful area in which to search for potential applications of quantum computers. This is particularly true for those available in the near term, so called noisy intermediate-scale quantum (NISQ) devices. In this Thesis, we develop and study three quantum machine learning applications suitable for NISQ computers, ordered in terms of increasing complexity of data presented to them. These algorithms are variational in nature and use parameterised quantum circuits (PQCs) as the underlying quantum machine learning model. The first application area is quantum classification using PQCs, where the data is classical feature vectors and their corresponding labels. Here, we study the robustness of certain data encoding strategies in such models against noise present in a quantum computer. The second area is generative modelling using quantum computers, where we use quantum circuit Born machines to learn and sample from complex probability distributions. We discuss and present a framework for quantum advantage for such models, propose gradient-based training methods and demonstrate these both numerically and on the Rigetti quantum computer up to 28 qubits. For our final application, we propose a variational algorithm in the area of approximate quantum cloning, where the data becomes quantum in nature. For the algorithm, we derive differentiable cost functions, prove theoretical guarantees such as faithfulness, and incorporate state of the art methods such as quantum architecture search. Furthermore, we demonstrate how this algorithm is useful in discovering novel implementable attacks on quantum cryptographic protocols, focusing on quantum coin flipping and key distribution as examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源