论文标题

线路排列中区域数量的注释

A Note on the Number of Regions in a Line Arrangement

论文作者

Annor, Dickson Y. B., Payne, Michael S.

论文摘要

对于在实际投影平面中的$ n $行安排,我们用$ f $表示真正的投影平面由线划分的区域数量。使用Bojanowski的不平等,我们为$ f $建立了一个新的下限。特别是,我们表明,如果不超过$ \ frac {2} {3} n $ lines在任何时候相交,则$ f \ ge \ frac {1} {6} {6} n^{2} $

For an arrangement of $n$ lines in the real projective plane, we denote by $f$ the number of regions into which the real projective plane is divided by the lines. Using Bojanowski's inequality, we establish a new lower bound for $f$. In particular, we show that if no more than $\frac{2}{3}n$ lines intersect at any point, then $f \ge \frac{1}{6}n^{2}$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源