论文标题
阳米尔斯理论中拓扑敏感性的颜色依赖性
Color dependence of the topological susceptibility in Yang-Mills theories
论文作者
论文摘要
对于Yang-Mills在四个维度上的理论,我们建议以通用方式重新塑造拓扑敏感性和弦张力平方之间的比率,仅取决于群体因素。我们将此建议应用于$ SU(N_C)$和$ SP(N_C)$组,并比较几个独立合作的晶格测量。我们表明,这两个组家族中(重新缩放)数值结果的两个序列相互兼容。因此,我们执行合并的拟合度,并推断到普通的大$ N_C $限制。
For Yang-Mills theories in four dimensions, we propose to rescale the ratio between topological susceptibility and string tension squared in a universal way, dependent only on group factors. We apply this suggestion to $SU(N_c)$ and $Sp(N_c)$ groups, and compare lattice measurements performed by several independent collaborations. We show that the two sequences of (rescaled) numerical results in these two families of groups are compatible with each other. We hence perform a combined fit, and extrapolate to the common large-$N_c$ limit.