论文标题
GRACE-C:通过约束的普遍不可知论因果估计
GRACE-C: Generalized Rate Agnostic Causal Estimation via Constraints
论文作者
论文摘要
如果生成过程的因果时间尺度不匹配数据的测量时间尺度,则通过因果学习算法估计的图形结构可以提供误导性的因果信息。现有的算法提供了有限的资源来应对这一挑战,因此研究人员必须使用他们知道可能具有误导性的模型,或者完全放弃因果学习。现有方法将面临最高四个不同的短缺,因为它们可能会面临1)要求因果关系和测量时间尺度之间的差异; 2)仅在时间尺度差异未知时处理非常少量的随机变量; 3)仅适用于一对变量;或4)在数据中无法找到给定统计噪声的解决方案。这项研究解决了这些挑战。我们的方法将约束编程与对问题结构的理论见解以及有关可接受因果关系相互作用的先前信息,以达到速度的多个数量级。所得系统保持理论保证,同时扩展到明显更大的随机变量集(> 100),而无需了解时间尺度差异。此方法对于边缘错误识别也很健壮,并且可以使用参数连接强度,同时可以选择在许多可能的解决方案中找到最佳解决方案。
Graphical structures estimated by causal learning algorithms from time series data can provide misleading causal information if the causal timescale of the generating process fails to match the measurement timescale of the data. Existing algorithms provide limited resources to respond to this challenge, and so researchers must either use models that they know are likely misleading, or else forego causal learning entirely. Existing methods face up-to-four distinct shortfalls, as they might 1) require that the difference between causal and measurement timescales is known; 2) only handle very small number of random variables when the timescale difference is unknown; 3) only apply to pairs of variables; or 4) be unable to find a solution given statistical noise in the data. This research addresses these challenges. Our approach combines constraint programming with both theoretical insights into the problem structure and prior information about admissible causal interactions to achieve multiple orders of magnitude in speed-up. The resulting system maintains theoretical guarantees while scaling to significantly larger sets of random variables (>100) without knowledge of timescale differences. This method is also robust to edge misidentification and can use parametric connection strengths, while optionally finding the optimal solution among many possible ones.