论文标题

部分可观测时空混沌系统的无模型预测

On Algebraic Constructions of Neural Networks with Small Weights

论文作者

Kilic, Kordag Mehmet, Sima, Jin, Bruck, Jehoshua

论文摘要

神经门根据输入变量的加权总和来计算功能。神经门的表达能力(可以计算的不同功能的数量)取决于重量大小,通常需要大量重量(输入数量的指数)。研究重量大小,电路的大小和深度之间的权衡是电路复杂性理论和神经计算实践中的一个充分研究的主题。我们提出了一种通过考虑相关代数框架来研究这些复杂性权衡的新方法。具体而言,给定具有任意系数的单个线性方程式,我们想使用具有较小(恒定)系数的线性方程系统表达它。我们开发的技术是基于西格尔的引理,用于界限的抗浓度不平等,对构造的Sylvester-type Hadamard矩阵的扩展。 我们明确构建一个恒定的重量,最佳尺寸矩阵来计算等效函数(检查以二进制表示的两个整数是否相等)。具有单线性方程式的计算平等需要指数级的重量。此外,我们证明了最著名的重量大小(线性)矩阵的存在来计算比较函数(在二进制中表达的两个整数之间进行比较)。在电路复杂性理论的背景下,我们的结果改善了最著名的电路大小的重量大小的上限,以进行平等和比较。

Neural gates compute functions based on weighted sums of the input variables. The expressive power of neural gates (number of distinct functions it can compute) depends on the weight sizes and, in general, large weights (exponential in the number of inputs) are required. Studying the trade-offs among the weight sizes, circuit size and depth is a well-studied topic both in circuit complexity theory and the practice of neural computation. We propose a new approach for studying these complexity trade-offs by considering a related algebraic framework. Specifically, given a single linear equation with arbitrary coefficients, we would like to express it using a system of linear equations with smaller (even constant) coefficients. The techniques we developed are based on Siegel's Lemma for the bounds, anti-concentration inequalities for the existential results and extensions of Sylvester-type Hadamard matrices for the constructions. We explicitly construct a constant weight, optimal size matrix to compute the EQUALITY function (checking if two integers expressed in binary are equal). Computing EQUALITY with a single linear equation requires exponentially large weights. In addition, we prove the existence of the best-known weight size (linear) matrices to compute the COMPARISON function (comparing between two integers expressed in binary). In the context of the circuit complexity theory, our results improve the upper bounds on the weight sizes for the best-known circuit sizes for EQUALITY and COMPARISON.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源