论文标题

基于二维Stefan问题的优化

Adjoint-based optimization of two-dimensional Stefan problems

论文作者

Fullana, Tomas, Chenadec, Vincent Le, Sayadi, Taraneh

论文摘要

提出了一系列使用跟踪型成本功能解决的二维Stefan问题的优化案例。使用水平集方法来捕获液相和固体相之间的界面,并使用与隐式时间预测方案结合的浸入式边界(切割单元)方法来求解热方程。然后使用保守的隐式解释方案来解决水平设置的传输方程。相对于远期Stefan问题的现有分析解决方案,对所得的数值框架进行了验证。然后使用基于伴随的算法来有效计算优化算法(L-BFGS)中使用的梯度。该算法遵循一个连续的伴随框架,其中使用形状微积分和传输定理正式得出伴随方程。提出了广泛的控制目标,结果表明,使用参数化的边界驱动会导致有效的控制策略来抑制界面不稳定性或保持所需的晶体形状。

A range of optimization cases of two-dimensional Stefan problems, solved using a tracking-type cost-functional, is presented. A level set method is used to capture the interface between the liquid and solid phases and an immersed boundary (cut cell) method coupled with an implicit time-advancement scheme is employed to solve the heat equation. A conservative implicit-explicit scheme is then used for solving the level set transport equation. The resulting numerical framework is validated with respect to existing analytical solutions of the forward Stefan problem. An adjoint-based algorithm is then employed to efficiently compute the gradient used in the optimisation algorithm (L-BFGS). The algorithm follows a continuous adjoint framework, where adjoint equations are formally derived using shape calculus and transport theorems. A wide range of control objectives are presented, and the results show that using parameterised boundary actuation leads to effective control strategies in order to suppress interfacial instabilities or to maintain a desired crystal shape.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源