论文标题
SystemMatch:通过生成潜在空间匹配,将临床前药物模型优化为人类临床结果
SystemMatch: optimizing preclinical drug models to human clinical outcomes via generative latent-space matching
论文作者
论文摘要
将临床前模型($ \ textit {in Betro} $,动物模型或器官)的相关性转化为它们在人类中的相关性,这在药物开发过程中提出了重要的挑战。来自人类肿瘤和组织的单细胞基因组数据的丰富度增加为模型系统与疾病中的人类细胞类型的相似性优化了新的机会。在这项工作中,我们介绍了SystemMatch,以评估临床前模型系统的拟合度{in sapiens} $目标人群,并推荐实验性更改以进一步优化这些系统。我们通过应用于开发$ \ textit {intter} $系统来建模人类肿瘤衍生的抑制巨噬细胞的应用来证明这一点。我们以持有的$ \ textit {in Vivo} $控制显示,我们的管道通过其生物学与目标人群的生物学相似性成功地对巨噬细胞亚群进行了排名,并应用此分析来对一系列18 $ \ textit {in Betro} $巨噬细胞系统对各种细胞因子刺激的影响。我们扩展了此分析,以预测使用扰动自动编码器生成的66 $ \ textit {in Silico} $模型系统的行为,并应用$ k $ medoids方法推荐这些模型系统的子集以进行进一步的实验开发,以便充分探索可能受到扰动的空间。通过这种用例,我们展示了一种新颖的方法来建模系统开发,以生成与人类生物学更相似的系统。
Translating the relevance of preclinical models ($\textit{in vitro}$, animal models, or organoids) to their relevance in humans presents an important challenge during drug development. The rising abundance of single-cell genomic data from human tumors and tissue offers a new opportunity to optimize model systems by their similarity to targeted human cell types in disease. In this work, we introduce SystemMatch to assess the fit of preclinical model systems to an $\textit{in sapiens}$ target population and to recommend experimental changes to further optimize these systems. We demonstrate this through an application to developing $\textit{in vitro}$ systems to model human tumor-derived suppressive macrophages. We show with held-out $\textit{in vivo}$ controls that our pipeline successfully ranks macrophage subpopulations by their biological similarity to the target population, and apply this analysis to rank a series of 18 $\textit{in vitro}$ macrophage systems perturbed with a variety of cytokine stimulations. We extend this analysis to predict the behavior of 66 $\textit{in silico}$ model systems generated using a perturbational autoencoder and apply a $k$-medoids approach to recommend a subset of these model systems for further experimental development in order to fully explore the space of possible perturbations. Through this use case, we demonstrate a novel approach to model system development to generate a system more similar to human biology.