论文标题
物理知识神经网络的超参数调整:应用于Helmholtz问题
Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems
论文作者
论文摘要
我们考虑物理信息的神经网络(PINN)[Raissi等,J。〜Comput。物理。 278(2019)686-707]用于前进的身体问题。为了找到最佳的PINNS配置,我们通过基于高斯流程的贝叶斯优化引入了超参数优化(HPO)程序。我们将HPO应用于Helmholtz方程进行有限域,并进行详尽的研究,重点是:(i)绩效,(ii)搭配点密度$ r $和(iii)频率$κ$,确认该方法的适用性和必要性。数值实验在两个和三个维度上进行,包括与有限元方法的比较。
We consider physics-informed neural networks (PINNs) [Raissi et al., J.~Comput. Phys. 278 (2019) 686-707] for forward physical problems. In order to find optimal PINNs configuration, we introduce a hyper-parameter optimization (HPO) procedure via Gaussian processes-based Bayesian optimization. We apply the HPO to Helmholtz equation for bounded domains and conduct a thorough study, focusing on: (i) performance, (ii) the collocation points density $r$ and (iii) the frequency $κ$, confirming the applicability and necessity of the method. Numerical experiments are performed in two and three dimensions, including comparison to finite element methods.