论文标题
域上Zygmund空间的T(P)定理
A T(P) theorem for Zygmund spaces on domains
论文作者
论文摘要
令$ d \ subset \ mathbb {r}^d $为有界的lipschitz域,$ω$为连续性的高级模量,让$ t $为卷积calderón-zygmund运算符。我们表征了Zygmund Space $ \ Mathcal {C}_Ω(D)$上有限的受限运算符$ T_D $。表征基于适用的多项式$ p $限制为$ d $的$ t_d p $的属性。
Let $D\subset \mathbb{R}^d$ be a bounded Lipschitz domain, $ω$ be a high order modulus of continuity and let $T$ be a convolution Calderón-Zygmund operator. We characterize the bounded restricted operators $T_D$ on the Zygmund space $\mathcal{C}_ω(D)$. The characterization is based on properties of $T_D P$ for appropriate polynomials $P$ restricted to $D$.