论文标题
无限范围P旋转随机晶体场中的多个过渡
Multiple transitions in an infinite range p-spin random-crystal field Blume Capel model
论文作者
论文摘要
我们研究了具有铁磁耦合的$ P $ spin型号,并针对$ p \ ge 3 $用于旋转1系统。我们发现该模型在所有$ p \ ge 3 $的有限温度$(t)$下具有一阶过渡的行。对于随机晶体场的双峰分布,这些线在\ emph {triple Point}上与晶体场$(δ)$的弱强度相交。除了$δ$的临界强度之外,它们不符合,其中一条线以\ emph {crigital Point} $(t_c)$结束。有趣的是,我们发现,从$ t_c $中增加$ t $,将其他参数固定为固定,该系统会再进行一次过渡,这是其字符中的第一阶。因此,该系统显示了所有有限$ p \ ge 3 $的一系列参数的gardner。对于$ p \ to \ infty $,模型的行为不同,在$ t = 0 $时只有一个随机的一阶过渡。
We study a $p$-spin model with ferromagnetic coupling and quenched random-crystal fields for $p \ge 3$ for spin-1 systems. We find that the model has lines of first order transitions at finite temperature $(T)$ for all $p \ge 3$. For bimodal distribution of the random-crystal field these lines meet at a \emph{triple point} for weak strength of the crystal field $(Δ)$. Beyond a critical strength of $Δ$, they do not meet and one of the lines ends at a \emph{critical point} $(T_c)$. Interestingly, we find that on increasing $T$ from $T_c$ keeping other parameters fixed, the system undergoes one more transition which is first order in its character. The system thus exhibits a Gardner like transition for a range of parameters for all finite $p \ge 3$. For $p \to \infty$ the model behaves differently and there is only one random first order transition at $T = 0$.