论文标题
将非视扰动横向动量依赖与TMD演化相结合
Combining nonperturbative transverse momentum dependence with TMD evolution
论文作者
论文摘要
理解强子结构的非限制性固有党的核心性质的核心是横向动量依赖(TMD)Parton分布和碎片函数的概念。最终,对于与现象学上提取的非逆转性结构的可靠连接,最终是必要的,尤其是在涉及广泛不同的尺度时,最终是必要的,它最终是必要的,它最终是必要的,该方法对包括进化,更高阶的进化,更高阶和与较大的横向动量匹配的TMD分解方法最终是必要的。在本文中,我们将解决最初针对非常高能量应用设计的现象学技术扩展到强子结构的研究时,会出现的一些困难,我们将巩固标准的高能量TMD实现与更直观的,更直观的基于Parton模型的方法之间的联系,以强调非效果效率的HADRON结构。在此过程中,我们将详细介绍前向TMD演变之间的差异,在本文中,我们称之为“自下而上”和“自上而下”的方法,我们将解释自下而上策略的优势。我们还将强调并阐明连接TMD和共线相关函数的整体关系的作用。我们将明确展示它们如何限制标准Collins-Sperman(CSS)TMD分解的标准Collins-Sperman(CSS)实现的非扰动“ $ G $ functions”。本文尤其针对现象学家和模型建筑商,他们有兴趣合并特定的非扰动模型和计算(包括晶格QCD)与TMD分解,以大$ Q $。我们的主要结果是将非扰动模型纳入TMD分解的配方,并以与扰动QCD和进化相匹配的方式来约束其参数。
Central to understanding the nonpertubative, intrinsic partonic nature of hadron structure are the concepts of transverse momentum dependent (TMD) parton distribution and fragmentation functions. A TMD factorization approach to the phenomenology of semi-inclusive processes that includes evolution, higher orders, and matching to larger transverse momentum, is ultimately necessary for reliably connecting with phenomenologically extracted nonperturbative structures, especially when widely different scales are involved. In this paper, we will address some of the difficulties that arise when phenomenological techniques that were originally designed for very high energy applications are extended to studies of hadron structures, and we will solidify the connection between standard high energy TMD implementations and the more intuitive, parton model based approaches to phenomenology that emphasize nonperturbative hadron structure. In the process, we will elaborate on differences between forward and backward TMD evolution, which in the context of this paper we call "bottom-up" and "top-down" approaches, and we will explain the advantages of a bottom-up strategy. We will also emphasize and clarify the role of the integral relations that connect TMD and collinear correlation functions. We will show explicitly how they constrain the nonperturbative "$g$-functions" of standard Collins-Soper-Sterman (CSS) implementations of TMD factorization. This paper is especially targeted toward phenomenologists and model builders who are interested in merging specific nonperturbative models and calculations (including lattice QCD) with TMD factorization at large $Q$. Our main result is a recipe for incorporating nonperturbative models into TMD factorization, and for constraining their parameters in a way that matches to perturbative QCD and evolution.