论文标题
X射线日食映射约束Swift J1858.6-0814的二进制倾斜度和质量比
X-ray Eclipse Mapping Constrains the Binary Inclination and Mass Ratio of Swift J1858.6-0814
论文作者
论文摘要
X射线日食映射是一种有前途的建模技术,能够限制e蚀二进制的中子星(NS)或黑洞(NSS)或黑洞(BHS)的质量和/或半径,并探测伴随恒星周围的任何结构。在黯然失色的系统中,二进制倾斜度,$ i $和质量比,$ q $通过整体持续时间与$ t_ {e} $相关。 $ i $和$ q $之间的堕落性可以通过Eclipse配置文件的详细建模而破坏。在这里,我们对NS低质量X射线Swift J1858.6 $ - $ 0814的日食进行建模。类似于EXO 0748 $ - $ 676,我们通过要求一层恒星材料围绕着我们的建模中的同伴星来找到辐射驱动驱动驱动驱动的证据。该材料层从同伴的表面延伸了$ \ sim 7000-14000 $公里,很可能是我们观察到的扩展,依赖能量和不对称的入口和出口的原因。我们的拟合返回$ i \ sim 81^{\ circ} $和质量比$ q \ sim 0.14 $的倾斜度。使用开普勒定律通过轨道时期($ \ sim $ 21.3小时)将同伴星的质量和半径联系起来,我们随后确定伴侣在$ 0.183 m _ {\ odot} \ odot} \ leq m_ {cs} \ leq 0.372 m $ $ _} $ 1. { r _ {\ odot} \ leq r_ {cs} \ leq 1.29 r _ {\ odot} $。我们的结果,结合了从恒星吸收/发射线测得的未来径向速度振幅,可以对该系统中的组件质量进行精确的约束。
X-ray eclipse mapping is a promising modelling technique, capable of constraining the mass and/or radius of neutron stars (NSs) or black holes (BHs) in eclipsing binaries and probing any structure surrounding the companion star. In eclipsing systems, the binary inclination, $i$, and mass ratio, $q$ relate via the duration of totality, $t_{e}$. The degeneracy between $i$ and $q$ can then be broken through detailed modelling of the eclipse profile. Here we model the eclipses of the NS low-mass X-ray binary Swift J1858.6$-$0814 utilising archival NICER observations taken while the source was in outburst. Analogous to EXO 0748$-$676, we find evidence for irradiation driven ablation of the companion's surface by requiring a layer of stellar material to surround the companion star in our modelling. This material layer extends $\sim 7000 - 14000$ km from the companion's surface and is likely the cause of the extended, energy-dependent and asymmetric ingress and egress that we observe. Our fits return an inclination of $i \sim 81^{\circ}$ and a mass ratio $q \sim 0.14$. Using Kepler's law to relate the mass and radius of the companion star via the orbital period ($\sim$ 21.3 hrs), we subsequently determine the companion to have a low mass in the range $0.183 M_{\odot} \leq M_{cs} \leq 0.372 M_{\odot}$ and a large radius in the range $1.02 R_{\odot} \leq R_{cs} \leq 1.29 R_{\odot}$. Our results, combined with future radial velocity amplitudes measured from stellar absorption/emission lines, can place precise constraints on the component masses in this system.