论文标题
Carleman的不平等和多谐操作员的独特延续
Carleman inequalities and unique continuation for the polyharmonic operators
论文作者
论文摘要
我们获得了$ l^p-l^q $ carleman估算的完整表征,重量$ e^{v \ cdot x} $用于多谐操作员。由于kenig-ruiz-sogge,我们的结果扩大了卡尔曼的不平等现象。因此,我们获得了高阶Schrödinger方程的新独特的延续性能,从而放宽了解决方案空间上的集成性假设。
We obtain a complete characterization of $L^p-L^q$ Carleman estimates with weight $e^{v\cdot x}$ for the polyharmonic operators. Our result extends the Carleman inequalities for the Laplacian due to Kenig--Ruiz--Sogge. Consequently, we obtain new unique continuation properties of higher order Schrödinger equations relaxing the integrability assumption on the solution spaces.