论文标题

Carleman的不平等和多谐操作员的独特延续

Carleman inequalities and unique continuation for the polyharmonic operators

论文作者

Jeong, Eunhee, Kwon, Yehyun, Lee, Sanghyuk

论文摘要

我们获得了$ l^p-l^q $ carleman估算的完整表征,重量$ e^{v \ cdot x} $用于多谐操作员。由于kenig-ruiz-sogge,我们的结果扩大了卡尔曼的不平等现象。因此,我们获得了高阶Schrödinger方程的新独特的延续性能,从而放宽了解决方案空间上的集成性假设。

We obtain a complete characterization of $L^p-L^q$ Carleman estimates with weight $e^{v\cdot x}$ for the polyharmonic operators. Our result extends the Carleman inequalities for the Laplacian due to Kenig--Ruiz--Sogge. Consequently, we obtain new unique continuation properties of higher order Schrödinger equations relaxing the integrability assumption on the solution spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源