论文标题
临界临界非线性schrödinger方程的解决方案的方案衰减
Pointwise Decay of solutions to the energy critical nonlinear Schrödinger equations
论文作者
论文摘要
在本说明中,我们证明,在解决3D能源至关的非线性schrödinger方程的解决方案时,假设数据以$ l^1 \ cap h^3 $。主要的成分是由于米亚奇(Miyachi)\ cite {miyachi}而在耐硬空间中的schrödinger繁殖者的界限和在强壮空间中的分数leibniz规则。我们还将分数链规则扩展到耐力空间。
In this note, we prove pointwise decay in time of solutions to the 3D energy-critical nonlinear Schrödinger equations assuming data in $L^1\cap H^3$. The main ingredients are the boundness of the Schrödinger propagators in Hardy space due to Miyachi \cite{Miyachi} and a fractional Leibniz rule in the Hardy space. We also extend the fractional chain rule to the Hardy space.