论文标题
理解和抑制光谐振器中的反向散射
Understanding and suppressing backscatter in optical resonators
论文作者
论文摘要
光腔已经发现在与量子发射器的接口中广泛使用。然而,人们对逆转和导致损失的担忧很大程度上阻止了光学剂中的光学元件的放置,例如镜片或调节剂在高腔内。在这项工作中,我们证明了在扭曲的光腔中对镜片反射的抑制。我们通过定量探索Fabry-Pérot谐振器中的反向散射来实现这一目标,将效果分为三个物理扇区:极化,模式包膜和空间模式轮廓。我们描述了每个部门的影响,并演示如何最大程度地减少每个部门的反射。这最终以低于基本模式的每十亿美元水平的有效反射性达到高潮。此外,我们表明携带轨道角动量体验的光束最高$ 10^{4} $乘以额外的抑制作用,仅受其他空腔模式的状态密度限制。将这些想法应用于激光陀螺仪可以强烈抑制锁定,从而在低旋转速率下提高灵敏度。
Optical cavities have found widespread use in interfacing to quantum emitters. Concerns about backreflection and resulting loss, however, have largely prevented the placement of optics such as lenses or modulators within high-finesse cavities. In this work, we demonstrate a million-fold suppression of backreflections from lenses within a twisted optical cavity. We achieve this by quantitatively exploring backscatter in Fabry-Pérot resonators, separating the effect into three physical sectors: polarization, mode envelope and spatial mode profile. We describe the impact of each of these sectors, and demonstrate how to minimize backreflections within each. This culminates in measured effective reflectivities below the part-per-billion level for the fundamental mode. Additionally, we show that beams carrying orbital angular momentum experience up to $10^{4}$ times additional suppression, limited only by the density of states of other cavity modes. Applying these ideas to laser gyroscopes could strongly suppress lock-in, thereby improving sensitivity at low rotation rates.