论文标题
局部旗帜空间的模棱两可的k理论
Equivariant K-theory of the space of partial flags
论文作者
论文摘要
我们使用Drinfeld样式生成器和关系来定义代数$ \ Mathfrak {U} _n $,这是``$ q = 0 $''版本的offine量子组的$ \ mathfrak {gl} _n。 $ v $定义Aggine $ 0 $ -SCHUR代数$ {\ Mathbb s} _0^{\ operatorName {aff}}}(n,d)$,并且要证明,每一个$ d $都存在$ \ mathfrak {u} $ to $ to $ to $ to $ to $ to $ to $ to $ s} _0^{\ operatatorName {aff}}(n,d)。$
We use Drinfeld style generators and relations to define an algebra $\mathfrak{U}_n$ which is a ``$q=0$'' version of the affine quantum group of $\mathfrak{gl}_n.$ We then use the convolution product on the equivariant $K$-theory of varieties of pairs of partial flags in a $d$-dimensional vector space $V$ to define affine $0$-Schur algebras ${\mathbb S}_0^{\operatorname{aff}}(n,d)$ and to prove that for every $d$ there exists a surjective homomorphism from $\mathfrak{U}_n$ to ${\mathbb S}_0^{\operatorname{aff}}(n,d).$