论文标题
高衍生的杨利米尔理论和二次引力的领先奇异性
Leading singularities in higher-derivative Yang-Mills theory and quadratic gravity
论文作者
论文摘要
在这项工作中,我们探讨了高衍生的阳米尔和二次重力中一环振幅的一般领先奇异性。已知这些理论具有包含二次和四分之一动量依赖性的繁殖物,从而导致存在不稳定的幽灵般的共鸣。但是,不稳定的颗粒不得通过单位性削减,因此仍然满足单位性。另一方面,这可能会在计算裁员概括的主要奇点时引起问题。然而,我们将以明确的例子显示领先的奇异性如何仍然得到很好的定义,因此,他们能够捕获有关此类更高衍生理论中振幅的分析结构的相关信息。我们讨论一些简单的单循环振幅,以阐明这些功能。
In this work we explore general leading singularities of one-loop amplitudes in higher-derivative Yang-Mills and quadratic gravity. These theories are known to possess propagators which contain quadratic and quartic momentum dependence, which leads to the presence of an unstable ghostlike resonance. However, unitarity cuts are not to be taken through unstable particles and therefore unitarity is still satisfied. On the other hand, this could engender issues when calculating leading singularities which are generalizations of unitarity cuts. Nevertheless, we will show with explicit examples how leading singularities are still well defined and accordingly they are able to capture relevant information on the analytic structure of amplitudes in such higher-derivative theories. We discuss some simple one-loop amplitudes which clarify these features.