论文标题
量子孤子动力学:非线性波力学和试验波理论
Quantum solitodynamics: Non-linear wave mechanics and pilot-wave theory
论文作者
论文摘要
1927年,路易斯·德·布罗格利(Louis de Broglie)提出了一种称为“双溶液程序”程序(DSP)的标准量子力学的替代方法,其中粒子被表示为以基础(较弱)波的指导为束场或孤子。 DSP演变为著名的de Broglie-Bohm飞行波解释(PWI),也称为Bohmian力学,但使用以基本波为指导的孤子来重现PWI动力学的一般思想被放弃了。在这里,我们提出了一个非线性标量场理论,能够为Schrödinger和Klein-Gordon引导波再现PWI。我们的模型依靠相对论的“相和谐”条件锁定了孤子粒子的相位和引导波。我们还讨论了在存在纠缠和外部(经典)电磁场的情况下,$ n $颗粒案例的理论扩展。
In 1927 Louis de Broglie proposed an alternative approach to standard quantum mechanics known as the double solution program (DSP) where particles are represented as bunched fields or solitons guided by a base (weaker) wave. DSP evolved as the famous de Broglie-Bohm pilot wave interpretation (PWI) also known as Bohmian mechanics but the general idea to use solitons guided by a base wave to reproduce the dynamics of the PWI was abandonned. Here we propose a nonlinear scalar field theory able to reproduce the PWI for the Schrödinger and Klein-Gordon guiding waves. Our model relies on a relativistic `phase harmony' condition locking the phases of the solitonic particle and the guiding wave. We also discuss an extension of the theory for the $N$ particles cases in presence of entanglement and external (classical) electromagnectic fields.