论文标题
$ f(q)$理论中的FLRW解决方案:使用不同连接的效果
FLRW solutions in $f(Q)$ theory: the effect of using different connections
论文作者
论文摘要
我们研究了$ f(q)$ - 重力理论中的Friedmann-Lema \^ıtre-Robertson-Walker(FLRW)时空,其中$ q $表示非中线标量。以前在文献中已经显示出有四个不同的连接家族,它们与FLRW指标的异构体兼容;三个用于空间平坦的外壳,当存在空间曲率时。在空间平坦的情况下,一种连接在动态上无关紧要,并产生笛卡尔坐标中一致规格的动力学。为此,我们获得了具有完美流体物质内容的任意$ f(q)$理论的一般解决方案,并为$ f(q)$函数的特定选择提供了各种示例。我们通过研究其余连接的效果来进行,这些连接是动态的,并影响运动的方程式。我们专注于$ q = $ const的方案。案例,仅通过宇宙常数再现一般相对论,并为幂律$ f(q)$函数提供了新颖的真空解决方案。
We study a Friedmann-Lema\^ıtre-Robertson-Walker (FLRW) space-time in the theory of $f(Q)$-gravity, where $Q$ denotes the non-metricity scalar. It has been previously shown in the literature, that there exist four distinct families of connections, which are compatible with the isometries of the FLRW metric; three for the spatially flat case and one when the spatial curvature is present. In the spatially flat case, one connection is dynamically irrelevant and yields the dynamics of the coincident gauge in the Cartesian coordinates. For this, we obtain the general solution of an arbitrary $f(Q)$ theory with a perfect fluid matter content, and present various examples for specific choices of the $f(Q)$ function. We proceed by studying the effect of the rest of the connections, which are dynamical and affect the equations of the motion. We concentrate in scenarios that depart from the $Q=$const. case, which just reproduces General Relativity with a cosmological constant, and derive novel vacuum solutions for a power-law $f(Q)$ function.