论文标题

强大的学习层状深度神经网络

Robust Learning of Parsimonious Deep Neural Networks

论文作者

Guenter, Valentin Frank Ingmar, Sideris, Athanasios

论文摘要

我们提出了一种同时学习和修剪算法,能够在培训的早期阶段识别和消除神经网络中的无关结构。因此,除推理外,随后的训练迭代的计算成本大大降低了。我们的方法基于使用高斯尺度混合先验的变异推理原理,在神经网络权重上,了解了与自适应辍学类似的单位/过滤器的Bernoulli随机变量的变异后验分布。我们的算法确保Bernoulli参数实际上会收敛到0或1,从而确定确定性的最终网络。我们通过分析得出一个新型的高优点分布,而不是先前参数,这对于它们的最佳选择至关重要,并且无论体重初始化或起始网络的大小如何,都会导致一致的修剪水平和预测准确性。我们证明了我们的算法的收敛特性,以建立理论和实际修剪条件。我们评估了MNIST和CIFAR-10数据集的提议算法,以及常用的完全连接和卷积Lenet和VGG16体系结构。该模拟表明,我们的方法与最新的结构化修剪方法达到了修剪水平,同时保持更好的测试准确性,更重要的是,在网络初始化和初始尺寸方面具有牢固的方式。

We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network during the early stages of training. Thus, the computational cost of subsequent training iterations, besides that of inference, is considerably reduced. Our method, based on variational inference principles using Gaussian scale mixture priors on neural network weights, learns the variational posterior distribution of Bernoulli random variables multiplying the units/filters similarly to adaptive dropout. Our algorithm, ensures that the Bernoulli parameters practically converge to either 0 or 1, establishing a deterministic final network. We analytically derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection and leads to consistent pruning levels and prediction accuracy regardless of weight initialization or the size of the starting network. We prove the convergence properties of our algorithm establishing theoretical and practical pruning conditions. We evaluate the proposed algorithm on the MNIST and CIFAR-10 data sets and the commonly used fully connected and convolutional LeNet and VGG16 architectures. The simulations show that our method achieves pruning levels on par with state-of the-art methods for structured pruning, while maintaining better test-accuracy and more importantly in a manner robust with respect to network initialization and initial size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源