论文标题

与$ $ - $ - 合成有关的一个域家族的插值功能

Interpolating functions for a family of domains related to $μ$-synthesis

论文作者

Roy, Samriddho

论文摘要

假设存在分析性插图映射来自单位光盘$ \ mathbb {d} $到$ \ widetilde {\ mathbb {g}} _ n $的两点数据,我们描述了一类此类插值功能的类别y_ {n-1},q)\ in \ mathbb {c}^n:\; q \ in \ mathbb {d},\; y_ {j} =β_{j} + \barβ_{n-j} q,\; β_{j} \ in \ mathbb {c} \; \ text {and} \; |β_{j} |+ |β_{n-j} | <{n \选择J} \; \ text {for} \; j = 1,\ dots,n-1 \}。$$,我们提出了$ \ widetilde {\ mathbb {g}} _ n $的连接,并带有$μ$ - 同步问题。

Assuming the existence of an analytic interpolant mapping a two-point data from the unit disc $\mathbb{D}$ to $\widetilde{\mathbb{G}}_n$, we describe a class of such interpolating functions where $$\widetilde{\mathbb{G}}_n := \{ (y_1,\dots, y_{n-1}, q)\in \mathbb{C}^n :\; q \in \mathbb{D},\; y_{j} = β_{j} + \barβ_{n-j} q,\; β_{j} \in \mathbb{C} \; \text{ and } \; |β_{j}|+ |β_{n-j}| < {n \choose j} \; \text{ for } \; j=1,\dots, n-1 \}.$$ We present the connection of $\widetilde{\mathbb{G}}_n$ with the $μ$-synthesis problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源