论文标题
在二维光学晶格中的原子费米气体的基态,没有种群不平衡
Ground states of atomic Fermi gases in a two-dimensional optical lattice with and without population imbalance
论文作者
论文摘要
我们研究了种群平衡和不平衡的超电原子费米气体的基态相图,并在整个从BCS到Bose-Einstein凝结(BEC)的交叉中具有短距离的吸引人的相互作用,由二维光学晶状体(2DOL)组成,由两个晶状体和一个连续性型组成。我们发现,晶格和连续尺寸的混合以及种群失衡,对原子费米气体的配对和多余的效果产生了非同寻常的影响。在平衡的情况下,超流体基态占相位空间的大部分。但是,对于相对较小的晶格跳跃$ t $和大型晶格常数$ d $,一对密度波(PDW)出乎意料地出现在中间耦合强度下以及平面内的性质以及从BCS和非单身制度中的粒子状和类似颗粒的整体配对变化,与异常相关的差异与差异相关,这与fermi量相关。在不平衡的情况下,稳定的两极化超氟相位仅缩小到整个阶段空间的一小部分,这些空间由$ t $,$ d $,$ d $,不平衡$ p $和交互强度$ u $ $ $ $ $,主要是在低$ p $,中等强度的配对和相对大的$ $ t $和小$ d $中。由于在受限动量空间内配对和过度的费米之间的保利排除,随着BEC策略中配对强度的增长,PDW阶段出现了,整个配对从粒子样变成了类似孔的样子。在这两种情况下,基态特性在很大程度上受费米表面拓扑结构。这些发现与纯3D连续体,3D晶格或1Dol的情况大不相同。
We study the ground state phase diagram of population balanced and imbalanced ultracold atomic Fermi gases with a short range attractive interaction throughout the crossover from BCS to Bose-Einstein condensation (BEC), in a two-dimensional optical lattice (2DOL) comprised of two lattice and one continuum dimensions. We find that the mixing of lattice and continuum dimensions, together with population imbalance, has an extraordinary effect on pairing and the superfluidity of atomic Fermi gases. In the balanced case, the superfluid ground state prevails the majority of the phase space. However, for relatively small lattice hopping integral $t$ and large lattice constant $d$, a pair density wave (PDW) emerges unexpectedly at intermediate coupling strength, and the nature of the in-plane and overall pairing changes from particle-like to hole-like in the BCS and unitary regimes, associated with an abnormal increase in the Fermi volume with the pairing strength. In the imbalanced case, the stable polarized superfluid phase shrinks to only a small portion of the entire phase space spanned by $t$, $d$, imbalance $p$ and interaction strength $U$, mainly in the bosonic regime of low $p$, moderately strong pairing, and relatively large $t$ and small $d$. Due to the Pauli exclusion between paired and excessive fermions within the confined momentum space, a PDW phase emerges and the overall pairing evolves from particle-like into hole-like, as the pairing strength grows stronger in the BEC regime. In both cases, the ground state property is largely governed by the Fermi surface topology. These findings are very different from the cases of pure 3D continuum, 3D lattice or 1DOL.