论文标题

Kardar-Parisi-Zhang的鲁棒性在经典的可整合旋转链中具有破碎的集成性

Robustness of Kardar-Parisi-Zhang scaling in a classical integrable spin chain with broken integrability

论文作者

Roy, Dipankar, Dhar, Abhishek, Spohn, Herbert, Kulkarni, Manas

论文摘要

最近的研究观察到了可整合的经典和量子旋转链中的超扩散。这些自旋链与Kardar-Parisi-Zhang(KPZ)通用类别之间的有趣联系已经出现。理论发展(例如广义流体动力学)突出了整合性以及自旋对称性在KPZ行为中的作用。但是,了解他们在超级延期运输中的确切作用仍然是一项具有挑战性的任务。广泛使用的量子自旋链平台具有严重的数值限制。为了避开这一障碍,我们专注于一个经典的可整合自旋链,该链被证明与量子自旋 - $ \ frac {1} {2} {2} $ Heisenberg链具有深层类比。值得注意的是,我们发现KPZ行为即使考虑到具有可积分性但自旋对称性的术语,也强烈表明自旋对称性也起着核心作用。另一方面,在非扰动制度中,我们发现能量相关性表现出明显的扩散行为。我们还研究了超级订购的相关器(OTOC)和Lyapunov指数的经典类似物。我们发现,即使KPZ的行为仍然强大,我们也会发现混乱的混乱情况。对于一类旋转对称性的术语,可以证明KPZ行为的鲁棒性。

Recent investigations have observed superdiffusion in integrable classical and quantum spin chains. An intriguing connection between these spin chains and Kardar-Parisi-Zhang (KPZ) universality class has emerged. Theoretical developments (e.g. generalized hydrodynamics) have highlighted the role of integrability as well as spin-symmetry in KPZ behaviour. However understanding their precise role on superdiffusive transport still remains a challenging task. The widely used quantum spin chain platform comes with severe numerical limitations. To circumvent this barrier, we focus on a classical integrable spin chain which was shown to have deep analogy with the quantum spin-$\frac{1}{2}$ Heisenberg chain. Remarkably, we find that KPZ behaviour prevails even when one considers integrability-breaking but spin-symmetry preserving terms, strongly indicating that spin-symmetry plays a central role even in the non-perturbative regime. On the other hand, in the non-perturbative regime, we find that energy correlations exhibit clear diffusive behaviour. We also study the classical analog of out-of-time-ordered correlator (OTOC) and Lyapunov exponents. We find significant presence of chaos for the integrability-broken cases even though KPZ behaviour remains robust. The robustness of KPZ behaviour is demonstrated for a wide class of spin-symmetry preserving integrability-breaking terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源