论文标题

一个同时递归的系统:LED-Shannon-Ollerton身份的概括

A System of Four simultaneous Recursions: Generalization of the Ledin-Shannon-Ollerton Identity

论文作者

Hendel, Russell Jay

论文摘要

本文进一步概括了香农和奥勒顿的最新结果,他们复活了由于LEDIN引起的旧身份。本文将LED-Shannon-Ollerton概括为所有金属序列。结果为第一个$ n $整数的产品的产品和金属序列的第一个$ n $成员提供了封闭的公式。本文的三个关键创新是i)将概括性的证明减少到解决4个同时递归系统的解决方案; ii)使用移位操作证明多项式的平等; iii)由满足4个同时递归的四个多项式家族的系数产生的新OEI序列。

This paper further generalizes a recent result of Shannon and Ollerton who resurrected an old identity due to Ledin. This paper generalizes the Ledin-Shannon-Ollerton result to all the metallic sequences. The results give closed formulas for the sum of products of powers of the first $n$ integers with the first $n$ members of the metallic sequence. Three key innovations of this paper are i) reducing the proof of the generalization to the solution of a system of 4 simultaneous recursions; ii) use of the shift operation to prove equality of polynomials; and iii) new OEIS sequences arising from the coefficients of the four polynomial families satisfying the 4 simultaneous recursions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源