论文标题
ybmg $ _2 $ bi $ _2 $和cAMG $ _2 $ bi $ _2 $的拓扑电子结构$ _2 $ _2 $
Topological electronic structure of YbMg$_2$Bi$_2$ and CaMg$_2$Bi$_2$
论文作者
论文摘要
ZINTL化合物已经针对其出色的热电特性进行了广泛的研究,但其电子结构在很大程度上尚未探索。在这里,我们介绍了使用角度分辨的光发射光谱(ARPES)和密度功能理论(DFT)(DFT),对ISSTRUCTIRAL THOTERPORE材料的电子结构ybmg $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $。 ARPES的结果显示,CAMG中的费米表面和费米速度要小得多,而费米的速度$ _2 $ bi $ _2 $比ybmg $ _2 $ _2 $ bi $ _2 $。我们的ARPES结果还表明,在YBMG $ _2 $ _2 $ $ _2 $,YB-4 $ F $ State的情况下,远低于费米水平,可能会对运输物业产生可忽略的影响。为了正确对4 $ f $ states的位置以及整体电子结构进行建模,在DFT计算中必须包括YB站点的Hubbard $ U $和自旋轨道耦合(SOC)。有趣的是,理论结果表明,这两种材料都属于$ Z_2 $拓扑类,并且主机强大的拓扑表面状态在$ e_ \ mathrm {f} $左右。由于固有的孔掺杂,拓扑状态位于费米水平以上,ARPE无法访问。我们的结果还表明,除了SOC,空缺和由此产生的孔掺杂外,在这些材料的运输特性中起着重要作用。
Zintl compounds have been extensively studied for their outstanding thermoelectric properties, but their electronic structure remains largely unexplored. Here, we present a detailed investigation of the electronic structure of the isostructural thermopower materials YbMg$_2$Bi$_2$ and CaMg$_2$Bi$_2$ using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT). The ARPES results show a significantly smaller Fermi surface and Fermi velocity in CaMg$_2$Bi$_2$ than in YbMg$_2$Bi$_2$. Our ARPES results also reveal that in the case of YbMg$_2$Bi$_2$, Yb-4$f$ states reside well below the Fermi level and likely have a negligible impact on transport properties. To properly model the position of 4$f$-states, as well as the overall electronic structure, a Hubbard $U$ at the Yb sites and spin-orbit coupling (SOC) have to be included in the DFT calculations. Interestingly, the theoretical results reveal that both materials belong to a $Z_2$ topological class and host robust topological surface states around $E_\mathrm {F}$. Due to the intrinsic hole doping, the topological states reside above the Fermi level, inaccessible by ARPES. Our results also suggest that in addition to SOC, vacancies and the resulting hole doping play an important role in the transport properties of these materials.