论文标题

线性打折的经济MPC无终端条件进行周期性最佳操作

Linearly discounted economic MPC without terminal conditions for periodic optimal operation

论文作者

Schwenkel, Lukas, Hadorn, Alexander, Müller, Matthias A., Allgöwer, Frank

论文摘要

在这项工作中,我们在最佳操作行为周期性的情况下研究经济模型预测控制(MPC)。在这种情况下,即使在任意长时间的预测范围内,没有终端条件的标准经济MPC方案的性能通常远非最佳。尽管有经过修改的经济MPC方案可以保证最佳性能,但所有这些方案都是基于对最佳时期长度或最佳周期轨道本身的先验知识。与这些方法相反,我们建议通过将阶段成本乘以线性折现因子来实现最佳性。这种修改不仅易于实现,而且独立于任何系统或特定于成本的属性,从而使该方案在其在线更改中的强大。在标准的消散性和可控性假设下,我们可以证明,没有终端条件的线性打折的经济MPC实现了最佳的渐近平均性能,直至随着预测范围增长而消失的错误。此外,我们可以保证最佳周期轨道的实践渐近稳定性在耗散性具有连续存储函数的其他技术假设下。我们通过对数值仿真研究中线性打折的MPC方案的瞬态和渐近平均性能进行定量分析来补充这些定性保证。

In this work, we study economic model predictive control (MPC) in situations where the optimal operating behavior is periodic. In such a setting, the performance of a standard economic MPC scheme without terminal conditions can generally be far from optimal even with arbitrarily long prediction horizons. Whereas there are modified economic MPC schemes that guarantee optimal performance, all of them are based on prior knowledge of the optimal period length or of the optimal periodic orbit itself. In contrast to these approaches, we propose to achieve optimality by multiplying the stage cost by a linear discount factor. This modification is not only easy to implement but also independent of any system- or cost-specific properties, making the scheme robust against online changes therein. Under standard dissipativity and controllability assumptions, we can prove that the resulting linearly discounted economic MPC without terminal conditions achieves optimal asymptotic average performance up to an error that vanishes with growing prediction horizons. Moreover, we can guarantee practical asymptotic stability of the optimal periodic orbit under the additional technical assumption that dissipativity holds with a continuous storage function. We complement these qualitative guarantees with a quantitative analysis of the transient and asymptotic average performance of the linearly discounted MPC scheme in a numerical simulation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源