论文标题

宇宙学信息的神经网络解决宇宙的背景动态

Cosmology-informed neural networks to solve the background dynamics of the Universe

论文作者

Chantada, Augusto T., Landau, Susana J., Protopapas, Pavlos, Scóccola, Claudia G., Garraffo, Cecilia

论文摘要

由于其方法成功地解决了许多不同的问题,因此机器学习领域吸引了其他各个领域的兴趣。这些应用是训练人工神经网络以求解微分方程而无需数值求解器。该特定应用程序提供了传统数值方法的替代方案,其优点(例如存储解决方案,并行化所需的较低存储器,并且在某些情况下,总体计算成本都比其数值对应物较低。在这项工作中,我们训练人工神经网络,以代表微分方程的一组解决方案,这些方程控制了四种不同模型的宇宙背景动力学。我们选择的模型是$λ\ Mathrm {CDM} $,Chevallier-Polarski-Linder参数暗能量模型,具有指数潜力的典型模型以及Hu-Sawicki $ F(R)$模型。我们使用网络提供的解决方案来执行统计分析,以通过观察数据估算每个模型参数的值;也就是说,从宇宙天元素计的哈勃参数,万神殿汇编中的ia级超新星数据以及巴里昂声学振荡的测量值的估计值。我们为所有模型获得的结果匹配使用数值求解器在文献中进行的相似估计。此外,我们估计了训练有素的网络提供的解决方案的误差,通过将它们与分析解决方案进行比较,或者在没有分析解决方案时将其与分析解决方案进行比较。通过这些估计,我们发现解决方案的误差最多是参数空间区域的$ \ sim1 \%$,涉及我们使用数据的$ 95 \%$置信区域,对于所有模型,以及所有模型和所有统计分析。

The field of machine learning has drawn increasing interest from various other fields due to the success of its methods at solving a plethora of different problems. An application of these has been to train artificial neural networks to solve differential equations without the need of a numerical solver. This particular application offers an alternative to conventional numerical methods, with advantages such as lower memory required to store solutions, parallelization, and, in some cases, a lower overall computational cost than its numerical counterparts. In this work, we train artificial neural networks to represent a bundle of solutions of the differential equations that govern the background dynamics of the Universe for four different models. The models we have chosen are $Λ\mathrm{CDM}$, the Chevallier-Polarski-Linder parametric dark energy model, a quintessence model with an exponential potential, and the Hu-Sawicki $f(R)$ model. We use the solutions that the networks provide to perform statistical analyses to estimate the values of each model's parameters with observational data; namely, estimates of the Hubble parameter from cosmic chronometers, type Ia supernovae data from the Pantheon compilation, and measurements from baryon acoustic oscillations. The results we obtain for all models match similar estimations done in the literature using numerical solvers. In addition, we estimate the error of the solutions that the trained networks provide by comparing them with the analytical solution when there is one, or to a high-precision numerical solution when there is not. Through these estimations we find that the error of the solutions is at most $\sim1\%$ in the region of the parameter space that concerns the $95\%$ confidence regions that we find using the data, for all models and all statistical analyses performed in this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源