论文标题
gan作为梯度流动的梯度流
GANs as Gradient Flows that Converge
论文作者
论文摘要
本文通过概率密度函数的梯度下降来解决无监督的学习问题。一个主要结果表明,沿梯度流,由分布依赖性的普通微分方程(ODE)引起的梯度流,未知的数据分布出现为长期极限。也就是说,可以通过模拟分布依赖性ode来揭示数据分布。有趣的是,ode的仿真相当于生成对抗网络(GAN)的训练。这种等效性提供了一种新的“合作”观点,更重要的是,对gan的差异阐明了新的启示。特别是,它揭示了GAN算法在两组样品之间隐式最小化平方误差(MSE),而单独使用此MSE拟合可能会导致gan差异。为了构建与分布相关的ODE的解决方案,我们首先证明了相关的非线性fokker-Planck方程具有独特的弱解,该解决方案是由Banach空间中的微分方程Crandall-Liggett定理。基于对Fokker-Planck方程的解决方案,我们使用Trevisan的叠加原理构建了ODE的独特解决方案。通过分析Fokker-Planck方程,可获得诱导的梯度流到数据分布的收敛性。
This paper approaches the unsupervised learning problem by gradient descent in the space of probability density functions. A main result shows that along the gradient flow induced by a distribution-dependent ordinary differential equation (ODE), the unknown data distribution emerges as the long-time limit. That is, one can uncover the data distribution by simulating the distribution-dependent ODE. Intriguingly, the simulation of the ODE is shown equivalent to the training of generative adversarial networks (GANs). This equivalence provides a new "cooperative" view of GANs and, more importantly, sheds new light on the divergence of GANs. In particular, it reveals that the GAN algorithm implicitly minimizes the mean squared error (MSE) between two sets of samples, and this MSE fitting alone can cause GANs to diverge. To construct a solution to the distribution-dependent ODE, we first show that the associated nonlinear Fokker-Planck equation has a unique weak solution, by the Crandall-Liggett theorem for differential equations in Banach spaces. Based on this solution to the Fokker-Planck equation, we construct a unique solution to the ODE, using Trevisan's superposition principle. The convergence of the induced gradient flow to the data distribution is obtained by analyzing the Fokker-Planck equation.