论文标题

用于模拟和分析iCecube空气淋浴的无线电排放的框架和工具

Framework and Tools for the Simulation and Analysis of the Radio Emission from Air Showers at IceCube

论文作者

Abbasi, R., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., Alameddine, J. M., Alves Jr., A. A., Amin, N. M., Andeen, K., Anderson, T., Anton, G., Argüelles, C., Ashida, Y., Axani, S., Bai, X., V., A. Balagopal, Barwick, S. W., Bastian, B., Basu, V., Baur, S., Bay, R., Beatty, J. J., Becker, K. -H., Tjus, J. Becker, Beise, J., Bellenghi, C., Benda, S., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Binder, G., Bindig, D., Blaufuss, E., Blot, S., Boddenberg, M., Bontempo, F., Book, J. Y., Borowka, J., Böser, S., Botner, O., Böttcher, J., Bourbeau, E., Bradascio, F., Braun, J., Brinson, B., Bron, S., Brostean-Kaiser, J., Burley, R. T., Busse, R. S., Campana, M. A., Carnie-Bronca, E. G., Chen, C., Chen, Z., Chirkin, D., Choi, K., Clark, B. A., Clark, K., Classen, L., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Coppin, P., Correa, P., Cowen, D. F., Cross, R., Dappen, C., Dave, P., De Clercq, C., DeLaunay, J. J., López, D. Delgado, Dembinski, H., Deoskar, K., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., de With, M., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dittmer, M., Dujmovic, H., Dunkman, M., DuVernois, M. A., Ehrhardt, T., Eller, P., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Fienberg, A. T., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Friedman, E., Fritz, A., Fürst, P., Gaisser, T. K., Gallagher, J., Ganster, E., Garcia, A., Garrappa, S., Gerhardt, L., Ghadimi, A., Glaser, C., Glauch, T., Glüsenkamp, T., Goehlke, N., Gonzalez, J. G., Goswami, S., Grant, D., Grégoire, T., Griswold, S., Günther, C., Gutjahr, P., Haack, C., Hallgren, A., Halliday, R., Halve, L., Halzen, F., Minh, M. Ha, Hanson, K., Hardin, J., Harnisch, A. A., Haungs, A., Hebecker, D., Helbing, K., Henningsen, F., Hettinger, E. C., Hickford, S., Hignight, J., Hill, C., Hill, G. C., Hoffman, K. D., Hoshina, K., Hou, W., Huang, F., Huber, M., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., In, S., Iovine, N., Ishihara, A., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katz, U., Kauer, M., Kellermann, M., Kelley, J. L., Kheirandish, A., Kin, K., Kintscher, T., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Kopper, S., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Krupczak, E., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lanfranchi, J. L., Larson, M. J., Lauber, F., Lazar, J. P., Lee, J. W., Leonard, K., Leszczyńska, A., Li, Y., Lincetto, M., Liu, Q. R., Liubarska, M., Lohfink, E., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Ludwig, A., Luszczak, W., Lyu, Y., Ma, W. Y., Madsen, J., Mahn, K. B. M., Makino, Y., Mancina, S., Mariş, I. C., Martinez-Soler, I., Maruyama, R., McCarthy, S., McElroy, T., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Meighen-Berger, S., Micallef, J., Mockler, D., Montaruli, T., Moore, R. W., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Naumann, U., Necker, J., Nguyen, L. V., Niederhausen, H., Nisa, M. U., Nowicki, S. C., Pollmann, A. Obertacke, Oehler, M., Oeyen, B., Olivas, A., O'Sullivan, E., Pandya, H., Pankova, D. V., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Peters, L., Peterson, J., Philippen, S., Pieper, S., Pizzuto, A., Plum, M., Popovych, Y., Porcelli, A., Rodriguez, M. Prado, Pries, B., Przybylski, G. T., Raab, C., Rack-Helleis, J., Raissi, A., Rameez, M., Rawlins, K., Rea, I. C., Rechav, Z., Rehman, A., Reichherzer, P., Reimann, R., Renzi, G., Resconi, E., Reusch, S., Rhode, W., Richman, M., Riedel, B., Roberts, E. J., Robertson, S., Roellinghoff, G., Rongen, M., Rott, C., Ruhe, T., Ryckbosch, D., Cantu, D. Rysewyk, Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Herrera, S. E. Sanchez, Sandrock, A., Santander, M., Sarkar, S., Sarkar, S., Satalecka, K., Schaufel, M., Schieler, H., Schindler, S., Schmidt, T., Schneider, A., Schneider, J., Schröder, F. G., Schumacher, L., Schwefer, G., Sclafani, S., Seckel, D., Seunarine, S., Sharma, A., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Soldin, D., Spannfellner, C., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Stein, R., Stettner, J., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Thwaites, J., Tilav, S., Tischbein, F., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Tselengidou, M., Tung, C. F., Turcati, A., Turcotte, R., Turley, C. F., Twagirayezu, J. P., Ty, B., Elorrieta, M. A. Unland, Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Veitch-Michaelis, J., Verpoest, S., Walck, C., Wang, W., Watson, T. B., Weaver, C., Weigel, P., Weindl, A., Weiss, M. J., Weldert, J., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Willey, N., Williams, D. R., Wolf, M., Wrede, G., Wulff, J., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P.

论文摘要

Icetop空调阵列的表面增强功能将包括添加无线电天线和闪烁板面板,并与现有的Ice-Cherenkov坦克共同铺设,并覆盖了约1 km $^2 $的面积。总之,这些将增加Icecube中微子天文台对宇宙射线引起的南极阵雨的电磁和恒温成分的敏感性。无线电技术的包含需要扩展的模拟和分析工具,以探索从70 MHz中的空气淋浴到350 MHz频段的射频发射。在本文中,我们描述了已开发的软件模块,这些软件模块可以在ICECUBE现有的软件框架ICERRY中与时间和频域信息一起使用,ICERTORY由整个IceCube协作使用。该软件包括一种方法,可以通过波形插值来重复使用coreas生成的空调模拟,从而克服了该领域的重大计算障碍。

The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km$^2$. Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules that have been developed to work with time- and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源