论文标题
一个未开发的二进制包装谷:宽松的干扰状态
An unexplored valley of binary packing: The loose jamming state
论文作者
论文摘要
我们基于硬球体理论对随机关闭填料因子ϕ_rcp^b进行了理论预测。未探索的制度是拆开的,其中填充分数ϕ_rcp^b小于单大小的一个ϕ_rcp^m的填料分数,即所谓的松散干扰状态。这与我们普遍的看法相比,二进制包装应始终达到较密集的包装,而不是在干扰状态下的单一包装。数值证据进一步支持了这一预测,并确认了尺寸比和摩尔分数(R_R-X_S)空间的状态位置,其中尺寸比R_R接近1,而较小的球体的摩尔X_S接近0的摩尔部分接近0。这种极端方案在现有文学中却没有重大的文献,但对于我们对Barinary Actymental Systems的根本性了解。
We present a theoretical prediction on random close packing factor ϕ_RCP^b of binary granular packings based on the hard-sphere fluid theory. An unexplored regime is unravelled, where the packing fraction ϕ_RCP^b is smaller than that of the mono-sized one ϕ_RCP^m, i.e., the so-called loose jamming state. This is against our common perception that binary packings should always reach a denser packing than mono-sized packings at the jamming state. Numerical evidence further supports this prediction and confirms the regime location in the size ratio and mole fraction (R_r-X_s) space, where the size ratio R_r is close to 1, and the mole fraction of the smaller sphere X_s close to 0. This extreme regime remains unreported in existing literature, yet significant for our fundamental understanding of binary packing systems.