论文标题

通用最优性和强大的效用界限,用于度量差异隐私

Universal Optimality and Robust Utility Bounds for Metric Differential Privacy

论文作者

Fernandes, Natasha, McIver, Annabelle, Palamidessi, Catuscia, Ding, Ming

论文摘要

我们在指标差异隐私的背景下研究隐私 - 实用性权衡。 Ghosh等。引入了通用最优性的想法,以表征某个查询的最佳机制,该查询同时满足(固定)$ε$ - 差异性隐私约束,而与其他任何其他查询的$ε$ - $ - $ - $ - $ difteriality私人机制相比,同一查询的效用也更好。他们表明,对于计数查询类别,几何机制是“普遍最佳的”。另一方面,布伦纳(Brenner)和尼西姆(Nissim)表明,在计算查询的空间之外,对于贝叶斯风险损失功能,没有这种普遍最佳的机制。在本文中,我们使用指标差异隐私和定量信息流作为研究普遍最优性的基本原则。度量差异隐私是对标准(即中央)差异隐私和当地差异隐私的概括,并且越来越多地用于各种应用程序域中,例如在位置隐私和保留机器学习中。使用此框架,我们能够澄清NISSIM和BRENNER的负面结果,表明(a)实际上所有隐私类型都包含相对于某些非平凡的损失函数的最佳机制,以及(b)扩展和推广其负面结果,超出贝叶斯的风险超出了贝叶斯的风险,专门针对广泛的非平凡损失函数。我们还提出了称为“隐私类型能力”的实用程序的较弱的通用基准。我们表明,这种能力始终存在,并且可以使用凸优化算法计算。

We study the privacy-utility trade-off in the context of metric differential privacy. Ghosh et al. introduced the idea of universal optimality to characterise the best mechanism for a certain query that simultaneously satisfies (a fixed) $ε$-differential privacy constraint whilst at the same time providing better utility compared to any other $ε$-differentially private mechanism for the same query. They showed that the Geometric mechanism is "universally optimal" for the class of counting queries. On the other hand, Brenner and Nissim showed that outside the space of counting queries, and for the Bayes risk loss function, no such universally optimal mechanisms exist. In this paper we use metric differential privacy and quantitative information flow as the fundamental principle for studying universal optimality. Metric differential privacy is a generalisation of both standard (i.e., central) differential privacy and local differential privacy, and it is increasingly being used in various application domains, for instance in location privacy and in privacy preserving machine learning. Using this framework we are able to clarify Nissim and Brenner's negative results, showing (a) that in fact all privacy types contain optimal mechanisms relative to certain kinds of non-trivial loss functions, and (b) extending and generalising their negative results beyond Bayes risk specifically to a wide class of non-trivial loss functions. We also propose weaker universal benchmarks of utility called "privacy type capacities". We show that such capacities always exist and can be computed using a convex optimisation algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源