论文标题
小说中的曲折磁性订单na $ _ {4-Δ} $ niteo $ _ {6} $ with $ \ mathit {s} $ = 1链
Zigzag magnetic order in a novel tellurate compound Na$_{4-δ}$NiTeO$_{6}$ with $\mathit{S}$ = 1 chains
论文作者
论文摘要
Na $ _ {4-δ} $ niteo $ _ {6} $是过渡金属tellurate家族实现$ S $ = 1旋转链结构的罕见例子。通过执行中子粉末衍射测量值,确定了Na $ _ {4-δ} $ niteo $ _ {6} $的基态磁性结构。 These measurements reveal that below $T\rm_{N}$ ${\sim}$ 6.8(2) K, the Ni$^{2+}$ moments form a screwed ferromagnetic (FM) spin-chain structure running along the crystallographic $a$ axis but these FM spin chains are coupled antiferromagnetically along the $b$ and $c$ directions, giving rise to a magnetic $ k $ =(0,1/2,1/2)的传播向量。该曲折的磁性顺序得到了第一原理的计算得到很好的支持。 ni $^{2+} $旋转的矩尺寸确定为2.1(1)$ $ $ $ $ \ rm_ {b} $在3 k时,这表明由于结晶电场(CEF)效果而引起的轨道力矩有明显的淬火。先前报道的元磁过渡附近$ h \ rm_ {c} $ $ {\ sim} $ 0.1 t可以理解为现场诱导的自旋绑带过渡。通过外部参数的磁性维度的相对简单可调性使NA $ _ {4-δ} $ niteo $ _ {6} $成为进一步探索各种新型新型旋转链物理学的有前途的候选人。
Na$_{4-δ}$NiTeO$_{6}$ is a rare example in the transition-metal tellurate family of realizing an $S$ = 1 spin-chain structure. By performing neutron powder diffraction measurements, the ground-state magnetic structure of Na$_{4-δ}$NiTeO$_{6}$ is determined. These measurements reveal that below $T\rm_{N}$ ${\sim}$ 6.8(2) K, the Ni$^{2+}$ moments form a screwed ferromagnetic (FM) spin-chain structure running along the crystallographic $a$ axis but these FM spin chains are coupled antiferromagnetically along the $b$ and $c$ directions, giving rise to a magnetic propagation vector of $k$ = (0, 1/2, 1/2). This zigzag magnetic order is well supported by first-principles calculations. The moment size of Ni$^{2+}$ spins is determined to be 2.1(1) $μ$$\rm_{B}$ at 3 K, suggesting a significant quenching of the orbital moment due to the crystalline electric field (CEF) effect. The previously reported metamagnetic transition near $H\rm_{C}$ ${\sim}$ 0.1 T can be understood as a field-induced spin-flip transition. The relatively easy tunability of the dimensionality of its magnetism by external parameters makes Na$_{4-δ}$NiTeO$_{6}$ a promising candidate for further exploring various types of novel spin-chain physics.