论文标题
数字标志问题和钢化
Numerical sign problem and the tempered Lefschetz thimble method
论文作者
论文摘要
数值符号问题是对许多重要的物理系统的定量理解的主要障碍,该系统具有第一原理的计算。此类系统的典型示例包括有限密度QCD,密切相关的电子系统和沮丧的自旋系统以及量子系统的实时动力学。在这次演讲中,我们认为“钢化的Lefschetz Thimble方法”(TLTM)[M. Fukuma和N. Umeda,Arxiv:1703.00861]及其扩展,“ WorldVolume perked Lefschetz Thimble方法”(WV-TLTM)[M. Fukuma和N. Matsumoto,Arxiv:2012.08468],可能是符号问题的可靠且通用的解决方案。我们通过举例说明WV-TLTM在Stephanov模型中的成功应用来证明算法的有效性,Stephanov模型是有限密度QCD的重要玩具模型。我们还讨论了WV-TLTM的计算缩放。
The numerical sign problem is a major obstacle to the quantitative understanding of many important physical systems with first-principles calculations. Typical examples for such systems include finite-density QCD, strongly-correlated electron systems and frustrated spin systems, as well as the real-time dynamics of quantum systems. In this talk, we argue that the "tempered Lefschetz thimble method" (TLTM) [M. Fukuma and N. Umeda, arXiv:1703.00861] and its extension, the "worldvolume tempered Lefschetz thimble method" (WV-TLTM) [M. Fukuma and N. Matsumoto, arXiv:2012.08468], may be a reliable and versatile solution to the sign problem. We demonstrate the effectiveness of the algorithm by exemplifying a successful application of WV-TLTM to the Stephanov model, which is an important toy model of finite-density QCD. We also discuss the computational scaling of WV-TLTM.