论文标题
在多项式的整数部分的最大常见分隔线上
On the greatest common divisor of integer parts of polynomials
论文作者
论文摘要
受到V. Bergelson和F. K. Richter(2017)的问题的激励,我们获得了由正整数组成的相对主要元素的数量的渐近公式,并在$ n $中评估的多项式元素的整数部分和整数部分。我们的公式中的误差项具有各种优势,具体取决于这些多项式领先系数的二磷特性。
Motivated by a question of V. Bergelson and F. K. Richter (2017), we obtain asymptotic formulas for the number of relatively prime tuples composed of positive integers $n\le N$ and integer parts of polynomials evaluated at $n$. The error terms in our formulas are of various strengths depending on the Diophantine properties of the leading coefficients of these polynomials.