论文标题

最小时间量子控制和量子腕骨方程

Minimum-Time Quantum Control and the Quantum Brachistochrone Equation

论文作者

Yang, Jing, del Campo, Adolfo

论文摘要

最小时间量子控制方案可以从量子腕骨形式主义[Carlini,Hosoya,Koike和Okudaira,Phys。莱特牧师。 96,06053,(2006)]。我们指出,原始治疗在固定边界条件下隐式地应用了变分积分。我们认为,与经典的Brachistochrone问题相反,真实的量子腕骨问题涉及一个可移动端点的变异问题。该公式不仅简化了量子腕骨方程的推导,而且由于边界效应而引入了端点的附加约束。我们介绍了完整的量子腕足方程的一般解决方案,并讨论其主要特征。使用它,我们证明,相对于不受限制的情况,约束下的进化速度降低了。此外,我们发现求解量子腕骨方程与求解Lagrange乘数的动力学密切相关,该动态通常由非线性微分方程控制。它们的数值集成允许生成时间超级轨迹。此外,当受限制的操作员形成封闭的亚级别时,Lagrange乘数将变为恒定,而最佳的Hamiltonian则采用简洁的形式。新的量子腕骨问题的新型可解决的模型为将其应用于多体量子系统,探索与几何相关的概念(例如量子速度限制)的可能性开辟了可能性,并显着推进了量子状态和门准备量子信息处理。

Minimum-time quantum control protocols can be obtained from the quantum brachistochrone formalism [Carlini, Hosoya, Koike, and Okudaira, Phys. Rev. Lett. 96, 06053, (2006)]. We point out that the original treatment implicitly applied the variational calculus with fixed boundary conditions. We argue that the genuine quantum brachistochrone problem involves a variational problem with a movable endpoint, contrary to the classical brachistochrone problem. This formulation not only simplifies the derivation of the quantum brachistochrone equation but introduces an additional constraint at the endpoint due to the boundary effect. We present the general solution to the full quantum brachistochrone equation and discuss its main features. Using it, we prove that the speed of evolution under constraints is reduced with respect to the unrestricted case. In addition, we find that solving the quantum brachistochrone equation is closely connected to solving the dynamics of the Lagrange multipliers, which is in general governed by nonlinear differential equations. Their numerical integration allows generating time-extremal trajectories. Furthermore, when the restricted operators form a closed subalgebra, the Lagrange multipliers become constant and the optimal Hamiltonian takes a concise form. The new class of analytically solvable models for the quantum brachistochrone problem opens up the possibility of applying it to many-body quantum systems, exploring notions related to geometry such as quantum speed limits, and advancing significantly the quantum state and gate preparation for quantum information processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源