论文标题
1 <z <2的射线测量和射线大声星的辐射光度校正
The Bolometric Luminosity Correction of Radio-Quiet and Radio-Loud Quasars at 1<z<2
论文作者
论文摘要
为了了解主动银河核(AGN)对其宿主星系和大规模环境的影响,对于确定其在所有波长(即骨仪亮度)上确定其总辐射功率至关重要。在这项贡献中,我们描述了如何使用黑洞(BH)质量,爱丁顿比率和自旋参数参数来估计其总辐射光度的参数。为了估计AGN的辐射光度,我们将积聚磁盘SED从1 $ $ $ m到10keV集成。我们的方法自愿涵盖了观察中的任何差距,并且不包括从圆环中重新处理的发射。积分盘SED,因此从中推断出的侧校法校正很大程度上取决于BH质量,爱丁顿的比率和自旋。特别是,可见的频段(5100 $ \,\ MATHRING {a} $和3000 $ \,\ MATHRING {A} $)在可见频带中的射线计校正在很大程度上取决于BH质量,而X射线在很大程度上取决于Eddington的比率。在接近吸积盘峰的波长下,依赖性变得较弱。另外,最大旋转(自旋= 1)类星体比在所有波长下的非旋转(spin = 0)对应物需要更高的降压校正。这项工作中介绍的SED和辐射校正可以确定任何放射线到Radio-Loud Type 1 AGN样本的辐射能力,其观察范围从1 $ $ m至10 $ \,如果观察值校正了灭绝。
To understand the impact of active galactic nuclei (AGN) on their host galaxies and large scale environment it is crucial to determine their total radiative power across all wavelengths (i.e., bolometric luminosity). In this contribution we describe how quasar accretion disk spectral energy distribution (SED) templates, parameterized by the black hole (BH) mass, Eddington ratio, and spin can be used to estimate their total radiated luminosity. To estimate the bolometric luminosity of AGN, we integrate the accretion disk SEDs from 1$μ$m to 10keV. Our approach self-consistently covers any gaps in observations and does not include reprocessed emission from the torus. The accretion disk SED, and consequently the bolometric correction inferred from it, strongly depend on the BH mass, the Eddington ratio, and spin. In particular, the bolometric correction in the visible bands (5100$\,\mathring{A}$ and 3000$\,\mathring{A}$) strongly depends on BH mass, and at X-ray strongly depends on the Eddington ratio. At wavelengths closer to the peak of the accretion disk SED the dependence becomes weaker. Additionally, maximally-rotating (spin = 1) quasars require a higher bolometric correction than their non-rotating (spin = 0) counterparts at all wavelengths. The SEDs and the bolometric correction presented in this work can determine the radiative power of any sample of radio-quiet to radio-loud Type 1 AGN with observations in the range from 1$μ$m to 10$\,$keV provided the observations are corrected for extinction.