论文标题
超级伪造的量子量子在多层WSE $ _2 $和MOSE $ _2 $中
Ultrafast pseudospin quantum beats in multilayer WSe$_2$ and MoSe$_2$
论文作者
论文摘要
带有六角形对称性的分层面包车材料为他们的电子提供了额外的自由度,即所谓的Valley Index或Valley Pseudospin。该数量在概念上的行为与电子自旋和术语valleytronics相似。在这种情况下,由于较大的自旋轨道相互作用和在六边形布里素区的K点处有直接的轨道相互作用,因此,半导体过渡金属二色元(TMDC)组特别有吸引力。在这项工作中,我们对单层和多层WSE $ _2 $和MOSE $ _2 $材料进行了对具有时间固定的Faraday Ellipticity(TRFE)的材料进行调查的调查$ b _ {\ Parallel} $,该$确认接近零的平面式ICKITON $ g $ g $ k $ g_ \ PARALALEL $,与第一原则计算一致。与之形成鲜明对比的是,我们观察到$ b _ {\ Parallel}> 0 $的多层样本中明显的时间振荡。 Remarkably, the extracted in-plane $g_\parallel$ are very close to reported out-of-plane exciton $g$ factors of the materials, namely $|g_{\parallel 1s}|=3.1\pm 0.2$ and $2.5\pm0.2$ for the 1s A excitons in WSe$_2$ and MoSe$_2$ multilayers, respectively.我们的第一原理计算很好地证实了多层样本的非零$ g _ {\ parallel} $。我们提出,多层样品中的振荡性TRFE信号是由伪造量子量动量引起的,这是多层样品中自旋和假蛋白层锁定的表现。我们的结果表明,在GHz-到Thz频率范围内的超快假旋转旋转,这为多层TMDC样品中的超快假蛋白操纵铺平了道路。
Layered van-der-Waals materials with hexagonal symmetry offer an extra degree of freedom to their electrons, the so called valley index or valley pseudospin. This quantity behaves conceptually like the electron spin and the term valleytronics has been coined. In this context, the group of semiconducting transition-metal dichalcogenides (TMDC) are particularly appealing, due to large spin-orbit interactions and a direct bandgap at the K points of the hexagonal Brillouin zone. In this work, we present investigations of excitonic transitions in mono- and multilayer WSe$_2$ and MoSe$_2$ materials by time-resolved Faraday ellipticity (TRFE) with in-plane magnetic fields, $B_{\parallel}$, of up to 9 T. In monolayer samples, the measured TRFE time traces are almost independent of $B_{\parallel}$, which confirms a close to zero in-plane exciton $g$ factor $g_\parallel$, consistent with first-principles calculations. In stark contrast, we observe pronounced temporal oscillations in multilayer samples for $B_{\parallel}>0$. Remarkably, the extracted in-plane $g_\parallel$ are very close to reported out-of-plane exciton $g$ factors of the materials, namely $|g_{\parallel 1s}|=3.1\pm 0.2$ and $2.5\pm0.2$ for the 1s A excitons in WSe$_2$ and MoSe$_2$ multilayers, respectively. Our first-principles calculations nicely confirm the presence of a non-zero $g_{\parallel}$ for the multilayer samples. We propose that the oscillatory TRFE signal in the multilayer samples is caused by pseudospin quantum beats of excitons, which is a manifestation of spin- and pseudospin layer locking in the multilayer samples. Our results demonstrate ultrafast pseudospin rotations in the GHz- to THz frequency range, which pave the way towards ultrafast pseudospin manipulation in multilayer TMDC samples.