论文标题

可对角线线性动力学系统的伪可容纳性问题

The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems

论文作者

D'Costa, Julian, Karimov, Toghrul, Majumdar, Rupak, Ouaknine, Joël, Salamati, Mahmoud, Worrell, James

论文摘要

我们研究线性动力学系统伪孔的基本可及性问题。可以将伪孔视为具有有限精度的计算模型,并且可以将伪可视性视为经典可及性的强大版本。使用基于$ o $ $ - 最小值的$ \ reals _ {\ exp} $的方法,我们证明了离散时间伪可持续性问题的可决定性,具有对角色线性动力学系统的任意半ge骨目标。我们还表明,我们的方法可用于将连续的伪及时性问题减少到(经典)时间限制的可及性问题,这是有条件地确定的。

We study fundamental reachability problems on pseudo-orbits of linear dynamical systems. Pseudo-orbits can be viewed as a model of computation with limited precision and pseudo-reachability can be thought of as a robust version of classical reachability. Using an approach based on $o$-minimality of $\reals_{\exp}$ we prove decidability of the discrete-time pseudo-reachability problem with arbitrary semialgebraic targets for diagonalisable linear dynamical systems. We also show that our method can be used to reduce the continuous-time pseudo-reachability problem to the (classical) time-bounded reachability problem, which is known to be conditionally decidable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源