论文标题
非本地反应扩散方程中前传播的动力学
The dynamics of front propagation in nonlocal reaction-diffusion equations
论文作者
论文摘要
这里解决的问题是解决方案对一类一维反应扩散方程的长期演变,其中积分运算符给出扩散。第一章中讨论的基本动机是对生物入侵模型的数学分析。所研究的模型虽然看上去很简单,但在现实生活中目前的使用。有趣的是,它是在完全不同的情况下出现的,例如研究概率理论的分支随机步行。 尽管所研究的模型吸引了很多关注,尽管在过去的几十年中,已经证明了有关其解决方案的时间渐近行为的许多部分结果,但有关尖锐渐近渐近技术的一些基本问题仍未得到解决。该专着的一种野心是弥合这些差距,并提供对方程式的完整和统一的处理。 在我们设想的某些情况下,水平集将自己组织成一个渐近线性的入侵阵线,直至校正,直到及时地呈指数收敛到常数。在其他构成工作的主要和最新部分的情况下,校正在时间上是渐进的对数。尽管这些明显的行为显然不同,但在所有这些情况的研究中仍存在一种基本的共同思维方式。 本书中提出的想法适用于更精致的系统建模生物学入侵或流行病的空间传播。这些模型本身可能是多维的,但是它们都具有一个共同的机制,将传播在给定的方向施加了。列出了示例的每一章问题。这些想法也应该在治疗当时无法设想的进一步模型的处理中很有用。
The question addressed here is the long time evolution of the solutions to a class of one-dimensional reaction-diffusion equations, in which the diffusion is given by an integral operator. The underlying motivation, discussed in the first chapter, is the mathematical analysis of models for biological invasions. The model under study, while simple looking, is of current use in real life situations. Interestingly, it arises in totally different contexts, such as the study of branching random walks in probability theory. While the model under study has attracted a lot of attention, and while many partial results about the time asymptotic behaviour of its solutions have been proved over the last decades, some basic questions on the sharp asymptotics have remained unanswered. One ambition of this monograph is to close these gaps and to provide a complete and unified treatment of the equation. In some of the situations that we envisage, the level sets organise themselves into an invasion front that is asymptotically linear in time, up to a correction that converges exponentially in time to a constant. In other situations, that constitute the main and newest part of the work, the correction is asymptotically logarithmic in time. Despite these apparent different behaviours, there is an underlying common way of thinking in the study of all these situations. The ideas presented in the book apply to more elaborate systems modelling biological invasions or the spatial propagation of epidemics. The models themselves may be multidimensional, but they all have in common a mechanism imposing the propagation in a given direction; examples are presented the problems that conclude each chapter. These ideas should also be useful in the treatment of further models that we are not able envisage at the time being.