论文标题

矩形储层中不稳定的浅蜿蜒曲折流量:宇宙建模的模态分析

Unsteady shallow meandering flows in rectangular reservoirs: A modal analysis of URANS modelling

论文作者

Valero, Daniel, Bung, Daniel B., Erpicum, Sebastien, Peltier, Yann, Dewals, Benjamin

论文摘要

浅流在自然和人为的环境中很常见。即使对于简单的矩形浅水储层,最近的实验室实验也表明,发育中的流场特别复杂,涉及大规模的湍流结构。对于储层尺寸和液压条件的特定组合,可以观察到蜿蜒的射流。尽管可以使用2D数值模型来重现此伪2D流量模式的某些方面,但基于本文所示的新的3D模拟,基于不稳定雷诺平均的Navier-Stokes方程,新的3D模拟显示出一致的优势。使用适当的正交分解来表征自由表面水平蜿蜒射流的四种最有能量的模式,从而可以与实验数据和2D(深度平均)数值结果进行比较。测试了三种不同的各向同性涡流粘度模型(RNG K-$ε$,K-$ε$,K-$ω$)。 3D模型准确地预测了模式的频率,而模式和相关能量的幅度被损坏,以摩擦为主的情况,并增加了非骨折的能量。三种湍流模型的性能基本相似,在雷诺数最高的情况下,RNG k-$ε$模型的预测稍好一些。最后,使用Q标准来识别涡旋并研究其动力学,有助于识别:i)三维现象(此处复制),ii)ii)在自由表面(实验性观察)和iii)中的二维足迹(iii),深度为深度呈现情况(由2D模型表示)。

Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-$ε$, k-$ε$, k-$ω$) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-$ε$ model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源