论文标题
在脑电图中各向异性正向问题的地表 - 曲线积分公式的快速解决方案策略上
On a Fast Solution Strategy for a Surface-Wire Integral Formulation of the Anisotropic Forward Problem in Electroencephalography
论文作者
论文摘要
这项工作着重于用于脑电图正向问题的混合表面积分方程求解器的准线性复杂性策略。该方案利用了电线自块的对角线占主导地位的结构 - 建模神经元纤维自相互作用 - 表面自块 - 建模界面电位。这种结构导致两个Neumann迭代方案进一步加速了自适应积分方法。所得算法是线性的,直到对数因素。数值结果证实了该方法在生物医学相关的情况下的性能。
This work focuses on a quasi-linear-in-complexity strategy for a hybrid surface-wire integral equation solver for the electroencephalography forward problem. The scheme exploits a block diagonally dominant structure of the wire self block -- that models the neuronal fibers self interactions -- and of the surface self block -- modeling interface potentials. This structure leads to two Neumann iteration schemes further accelerated with adaptive integral methods. The resulting algorithm is linear up to logarithmic factors. Numerical results confirm the performance of the method in biomedically relevant scenarios.