论文标题

Newman-Moore模型中自回归神经网络的神经退火和可视化

Neural annealing and visualization of autoregressive neural networks in the Newman-Moore model

论文作者

Inack, Estelle M., Morawetz, Stewart, Melko, Roger G.

论文摘要

人工神经网络已被广泛用作研究经典和量子系统。但是,尽管具有代表性和纠缠含量,但一些表现出玻璃性和挫败感的硬系统(例如表现出玻璃性和挫败感的系统)的结果主要不令人满意,因此暗示了学习过程中计算复杂性的潜在保护。我们通过在表现出玻璃状和分形动力学的模型上使用自回归神经网络实施神经退火方法来探讨这种可能性:三维纽曼 - 摩尔在三角晶格上的模型。我们发现,由于高度混乱的损失景观,退火动态在全球范围内不稳定。此外,即使发现正确的基态能量,神经网络通常由于模式塌陷而无法找到归化的地下态构型。这些发现表明,纽曼 - 摩尔模型在配置空间中存在激励引起的玻璃动力学可能会通过训练性问题和优化景观中的模式崩溃来表现出来。

Artificial neural networks have been widely adopted as ansatzes to study classical and quantum systems. However, some notably hard systems such as those exhibiting glassiness and frustration have mainly achieved unsatisfactory results despite their representational power and entanglement content, thus, suggesting a potential conservation of computational complexity in the learning process. We explore this possibility by implementing the neural annealing method with autoregressive neural networks on a model that exhibits glassy and fractal dynamics: the two-dimensional Newman-Moore model on a triangular lattice. We find that the annealing dynamics is globally unstable because of highly chaotic loss landscapes. Furthermore, even when the correct ground state energy is found, the neural network generally cannot find degenerate ground-state configurations due to mode collapse. These findings indicate that the glassy dynamics exhibited by the Newman-Moore model caused by the presence of fracton excitations in the configurational space likely manifests itself through trainability issues and mode collapse in the optimization landscape.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源