论文标题

Bohmian启发了对非高斯事件建模和在金融市场中应用的潜力

Quantum Bohmian Inspired Potential to Model Non-Gaussian Events and the Application in Financial Markets

论文作者

Hosseini, Reza, Tajik, Samin, Lai, Zahra Koohi, Jamali, Tayeb, Haven, Emmanuel, Jafari, G. Reza

论文摘要

我们已经实施了主要基于Bohmian力学的量子建模,以研究其事件之间包含强耦合的时间序列。我们首先提出与正常密度相比,我们的目标时间序列似乎与较高的罕见事件相关,而高斯统计数据往往会大大低估这些事件的频率。为此,我们建议,通过将高斯密度强加于自然过程,人们会严重忽略在许多情况下极端事件的存在。我们研究的中心问题涉及考虑这些罕见事件在相应概率密度中的影响,并从量子测量的角度研究它们的作用。为了对这些时间序列的非高斯行为进行建模,我们利用多型随机步行(MRW)方法并相应地控制非高斯性参数$λ$。然后,我们使用量子力学的框架,然后检查$λ$在这些时间序列中得出的量子电位中的作用。我们的Bohmian量子分析表明,派生电位在高频(其平均值)中会产生一些负值,然后大大增加,并且对于罕见事件而言,该值再次下降。因此,我们得出的结论是,这些事件可能会产生一个潜在的障碍,即该系统在非高斯高频区域徘徊,遇到的障碍,并且在横渡这一障碍方面,它们的作用变得更加突出。在这项研究中,作为在微世界之外使用量子电位的一个例子,我们计算了S \&P金融市场时间序列的量子电位,以验证此真实数据中非高斯密度中罕见事件的存在,并评论与高斯病例的偏差。

We have implemented quantum modeling mainly based on Bohmian Mechanics to study time series that contain strong coupling between their events. We firstly propose how compared to normal densities, our target time series seem to be associated with a higher number of rare events, and Gaussian statistics tend to underestimate these events' frequency drastically. To this end, we suggest that by imposing Gaussian densities to the natural processes, one will seriously neglect the existence of extreme events in many circumstances. The central question of our study concerns the consideration of the effects of these rare events in the corresponding probability densities and studying their role from the point of view of quantum measurements. To model the non-Gaussian behavior of these time-series, we utilize the multifractal random walk (MRW) approach and control the non-Gaussianity parameter $λ$ accordingly. Using the framework of quantum mechanics, we then examine the role of $λ$ in quantum potentials derived for these time series. Our Bohmian quantum analysis shows that the derived potential takes some negative values in high frequencies (its mean values), then substantially increases, and the value drops again for the rare events. We thus conclude that these events could generate a potential barrier that the system, lingering in a non-Gaussian high-frequency region, encounters, and their role becomes more prominent when it comes to transversing this barrier. In this study, as an example of the application of quantum potential outside of the micro-world, we compute the quantum potentials for the S\&P financial market time series to verify the presence of rare events in the non-Gaussian densities for this real data and remark the deviation from the Gaussian case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源