论文标题
强相关电子系统颜色的理论
A Theory for Colors of Strongly Correlated Electronic Systems
论文作者
论文摘要
许多密切相关的过渡金属绝缘子都有着色,即使它们具有较大的基本带隙,并且在可见范围内没有准粒子激发。为什么这样的绝缘子具有它们的颜色,对任何多体理论都构成了严重的挑战,即可靠地拿起负责颜色的相互作用。我们选择两个原型案例作为示例:具有绿色的Nio和Mnf \ TextSubscript {2},带有粉红色。围绕集体电荷过渡(激子)的文献主体负责这些和其他密切相关的系统中的颜色,通常无法解散两个重要因素:是什么使它们形成,是什么使它们在光学上是明亮的。一个足够的答案需要一种理论方法,能够可靠且没有免费参数来计算周期性晶体中的激发 - 这是一个巨大的挑战。我们采用两种高级\ emph {ab intio}许多身体绿色的功能理论来研究光学和旋转敏感性。首先是基于$ GW $近似的低阶扩展的扰动理论,能够解释NIO中的颜色,并且确实很好地描述了整个频谱中的介电响应,而相同的理论无法解释为什么MNF \ TextSubscript {2}是粉红色的。我们显示其颜色源自更高阶的自旋转变,可修饰光学响应。这种现象不是由低阶扰动理论捕获的,而是包含在动态平均场理论(DMFT)中,该理论具有动力学自旋顶点,这有助于电荷敏感性。我们表明,对称性降低机制,例如自旋轨道耦合,奇数声子和扬·泰勒扭曲,决定了这些激子的“明亮”,但对它们的存在不是基础。
Many strongly correlated transition metal insulators are colored, even though they have large fundamental band gaps and no quasi-particle excitations in the visible range. Why such insulators possess the colors they do poses a serious challenge for any many-body theory to reliably pick up the interactions responsible for the color. We pick two archetypal cases as examples: NiO with green color and MnF\textsubscript{2} with pink color. The body of literature around the collective charge transitions (excitons) that are responsible for the color in these and other strongly correlated systems, often fail to disentangle two important factors: what makes them form and what makes them optically bright. An adequate answer requires a theoretical approach able to compute such excitations in periodic crystals, reliably and without free parameters -- a formidable challenge. We employ two kinds of advanced \emph{ab initio} many body Green's function theories to investigate both optical and spin susceptibilities. The first, a perturbative theory based on low-order extensions of the $GW$ approximation, is able to explain the color in NiO, and indeed well describe the dielectric response over the entire frequency spectrum, while the same theory is unable to explain why MnF\textsubscript{2} is pink. We show its color originates from higher order spin-flip transitions that modify the optical response. This phenomenon is not captured by low-order perturbation theory, but it is contained in dynamical mean-field theory (DMFT), which has a dynamical spin-flip vertex that contributes to the charge susceptibility. We show that symmetry lowering mechanisms, such as spin-orbit coupling, odd-parity phonons and Jan-Teller distortions, determine how `bright' these excitons are, but are not fundamental to their existence.