论文标题
对独立集和(连接的)主导集合重新配置问题的参数复杂性的调查
A survey on the parameterized complexity of the independent set and (connected) dominating set reconfiguration problems
论文作者
论文摘要
图顶点 - 子集问题定义了输入图的顶点的哪个子集是可行的解决方案。我们将可行的解决方案视为放置在图形顶点上的一组令牌。给定两个可行的$ k $的可行解决方案,无论是否可以通过一系列令牌幻灯片(沿图的边缘)或令牌跳跃(图表的任意角度之间),每个中间设置仍然是一个可行的尺寸$ k $ $ k $。许多算法问题以重新配置问题的形式出现:鉴于对初始系统状态的描述和目标状态的描述,是否可以将系统从其初始状态转换为目标一个,同时在过程中保留系统的某些属性?在所谓的组合重新配置框架下,此类问题受到了大量关注。我们考虑三个基本基础图顶点问题的重新配置变体,即独立集,主导集和连接的主导集。当由令牌$ k $的数量进行参数化时,我们对所有三个问题的参数复杂性进行了较旧的和更近的工作。重点将放在固定参数可拖动算法设计的积极结果和最常见的技术上。
A graph vertex-subset problem defines which subsets of the vertices of an input graph are feasible solutions. We view a feasible solution as a set of tokens placed on the vertices of the graph. A reconfiguration variant of a vertex-subset problem asks, given two feasible solutions of size $k$, whether it is possible to transform one into the other by a sequence of token slides (along edges of the graph) or token jumps (between arbitrary vertices of the graph) such that each intermediate set remains a feasible solution of size $k$. Many algorithmic questions present themselves in the form of reconfiguration problems: Given the description of an initial system state and the description of a target state, is it possible to transform the system from its initial state into the target one while preserving certain properties of the system in the process? Such questions have received a substantial amount of attention under the so-called combinatorial reconfiguration framework. We consider reconfiguration variants of three fundamental underlying graph vertex-subset problems, namely Independent Set, Dominating Set, and Connected Dominating Set. We survey both older and more recent work on the parameterized complexity of all three problems when parameterized by the number of tokens $k$. The emphasis will be on positive results and the most common techniques for the design of fixed-parameter tractable algorithms.