论文标题

部分可观测时空混沌系统的无模型预测

Investigation of the effect of the grain sizes on the dynamic strength of the fine-grained alumina ceramics obtained by Spark Plasma Sintering

论文作者

V., Melekhin N., S., Boldin M., M., Bragov A., R., Filippov A., A., Popov A., V., Shotin S., V., Nokhrin A., N., Chuvil'deev V., A., Murashov A., Yu., Tabachkova N.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The results of dynamic strength tests of the alumina ceramics with various grain sizes are presented. The ceramics were obtained by Spark Plasma Sintering (SPS) of industrial submicron and fine Al2O3 powders. The heating up was performed with the rate of 10 oC/min; the grain sizes in the ceramics was controlled by varying the SPS temperature and the heating rate as well as by varying the initial sizes of the Al2O3 particles in the powders. The ceramics had a high density (over 98%) and a uniform fine-grained microstructure (the mean grain sizes varied from 0.8 to 13.4 mkm). The dynamic compressing tests were carried out by modified Kolsky method with using split Hopkinson pressure bar. The tests were performed at room temperature using a 20-mm PG-20 gas gun with the strain rate of ~10^3 s-1. The dependence of the dynamic ultimate strength of alumina on the grain size was found for the first time to have a non-monotonous character (with a maximum). The maximum value of the dynamic ultimate compression strength (SY = 1060 MPa) was provided at the mean grain size of ~2.9-3 mkm. The reduction of SY for alumina in the range of submicron grain sizes was shown to originate from the reduction of the relative density of the ceramics sintered at lower SPS temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源