论文标题
谐波GBC函数图是如果目标结构域是凸面
The Harmonic GBC Function Map is a Bijection if the Target Domain is Convex
论文作者
论文摘要
自2006年的早期工作\ Cite {jmdgs06}以来,谐波广义barycentric坐标(GBC)功能已用于卡通动画。在\ cite {sh15}中进一步开发了一个计算过程,以在任意两个多边形之间进行变形。在文献中,基于谐波GBC函数的地图的射击性仍然模糊。在本文中,我们提供了一个基本证据,证明了谐波GBC地图的生命,该映射从一个任意的多边形域$ V $转换为凸多边形域$ W $。如果谐波映射保留了域$ v $的边界的方向,则该结果将从一个简单连接的域$ v $从一个简单连接的域$ v $扩展到更通用的和声地图。此外,我们将指出,谐波GBC地图也是$ w $内部$ v $内部的差异性。最后,我们评论如何在$ v $的顶点数量与$ w $的顶点的数量以及如何在带有一个或孔的多边形域上构建谐波GBC函数时,如何构建谐波GBC地图从$ v $到$ w $。我们还指出,可以通过$ \ partial v $和$ \ partial w $之间的边界图的良好安排,可以使用谐波GBC映射将非Convex Polygon $ V $变形为另一个Nonconvex Polygon $ W $。提出了基于图像的几个数值变形,以根据谐波GBC函数的双变量样条近似显示地图的有效性。
Harmonic generalized barycentric coordinates (GBC) functions have been used for cartoon animation since an early work in 2006\cite{JMDGS06}. A computational procedure was further developed in \cite{SH15} for deformation between any two polygons. The bijectivity of the map based on harmonic GBC functions is still murky in the literature. In this paper, we present an elementary proof of the bijection of the harmonic GBC map transforming from one arbitrary polygonal domain $V$ to a convex polygonal domain $W$. This result is further extended to a more general harmonic map from one simply connected domain $V$ to a convex domain $W$ if the harmonic map preserves the orientation of the boundary of the domain $V$. In addition, we shall point out that the harmonic GBC map is also a diffeomorphism over the interior of $V$ to the interior of $W$. Finally, we remark on how to construct a harmonic GBC map from $V$ to $W$ when the number of vertices of $V$ is different from the number of vertices of $W$ and how to construct harmonic GBC functions over a polygonal domain with a hole or holes. We also point out that it is possible to use the harmonic GBC map to deform a nonconvex polygon $V$ to another nonconvex polygon $W$ by a good arrangement of the boundary map between $\partial V$ and $\partial W$. Several numerical deformations based on images are presented to show the effectiveness of the map based on bivariate spline approximation of the harmonic GBC functions.