论文标题

与随机麦克斯韦方程的不连续galerkin方法具有乘法噪声

Discontinuous Galerkin methods for stochastic Maxwell equations with multiplicative noise

论文作者

Sun, Jiawei, Shu, Chi-Wang, Xing, Yulong

论文摘要

在本文中,我们提出和分析有限元不连续的盖尔金方法,用于具有乘法噪声的一维随机麦克斯韦方程。研究了半分化DG方法的离散能量定律。对于一维情况,获得了半分化方法的最佳误差估计,以及在某些网格假设下的矩形网格和三角形网格的二维情况。强泰勒2.0方案用作时间离散化。一维数值结果均显示为验证理论分析结果。

In this paper we propose and analyze finite element discontinuous Galerkin methods for the one- and two-dimensional stochastic Maxwell equations with multiplicative noise. The discrete energy law of the semi-discrete DG methods were studied. Optimal error estimate of the semi-discrete method is obtained for the one-dimensional case, and the two-dimensional case on both rectangular meshes and triangular meshes under certain mesh assumptions. Strong Taylor 2.0 scheme is used as the temporal discretization. Both one- and two-dimensional numerical results are presented to validate the theoretical analysis results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源