论文标题

Ziegler的典型多锻炼的电感

Inductive Freeness of Ziegler's Canonical Multiderivations

论文作者

Hoge, Torsten, Roehrle, Gerhard

论文摘要

令$ \ Mathcal A $为免费的超平面布置。 1989年,齐格勒(Ziegler)表明,限制$ \ mathcal a'$ of $ \ mathcal a $ a $ a $ a $ en of ender with withing the自然多样性$κ$的超平面是一个免费的多级别$(\ mathcal a'''',κ)$。本文的目的是证明Ziegler定理的类似物,以更强的感应freeness概念:如果$ \ Mathcal a $是免费的,那么多级别$(\ Mathcal a'''',κ)也是如此。在相关的结果中,我们得出的是,如果删除$ \ MATHCAL a'$ of $ \ MATHCAL A $是免费的,并且相应的限制$ \ Mathcal a''$是免费的,那么$(\ Mathcal a'''',κ)$ - 无论是$ \ nathcal a $ a $而言,$(\ natercal a'',x'',x'',x'',x'',x'',x',x'',x'',x',x'',ch'''$。此外,我们还显示了后一种的添加剂和递归杂志的对应物。

Let $\mathcal A$ be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction $\mathcal A''$ of $\mathcal A$ to any hyperplane endowed with the natural multiplicity $κ$ is then a free multiarrangement $(\mathcal A'',κ)$. The aim of this paper is to prove an analogue of Ziegler's theorem for the stronger notion of inductive freeness: if $\mathcal A$ is inductively free, then so is the multiarrangement $(\mathcal A'',κ)$. In a related result we derive that if a deletion $\mathcal A'$ of $\mathcal A$ is free and the corresponding restriction $\mathcal A''$ is inductively free, then so is $(\mathcal A'',κ)$ -- irrespective of the freeness of $\mathcal A$. In addition, we show counterparts of the latter kind for additive and recursive freeness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源