论文标题

部分可观测时空混沌系统的无模型预测

Self-similar shrinking of supports and non-extinction for a nonlinear diffusion equation with spatially inhomogeneous strong absorption

论文作者

Iagar, Razvan Gabriel, Laurençot, Philippe, Sánchez, Ariel

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study the dynamics of the following porous medium equation with strong absorption $$\partial_t u=Δu^m-|x|^σu^q,$$ posed for $(t, x) \in (0,\infty) \times \mathbb{R}^N$, with $m > 1$, $q \in (0, 1)$ and $σ> 2(1-q)/(m-1)$. Considering the Cauchy problem with non-negative initial condition $u_0 \in L^\infty(\mathbb{R}^N)$ instantaneous shrinking and localization of supports for the solution $u(t)$ at any $t > 0$ are established. With the help of this property, existence and uniqueness of a nonnegative compactly supported and radially symmetric forward self-similar solution with algebraic decay in time are proven. Finally, it is shown that finite time extinction does not occur for a wide class of initial conditions and this unique self-similar solution is the pattern for large time behavior of these general solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源